Color optimization of a core-shell nanoparticles layer using machine learning techniques

被引:0
|
作者
Urquia, G. M. [1 ]
Inchaussandague, M. E. [1 ,2 ]
Skigin, D. C. [1 ,2 ]
机构
[1] Univ Buenos Aires, Fac Ciencias Exactas & Nat, Dept Fis, Grp Electromagnetismo Aplicado, Buenos Aires, Argentina
[2] Univ Buenos Aires, CONICET, Inst Fis Buenos Aires IFIBA, Buenos Aires, Argentina
来源
RESULTS IN OPTICS | 2023年 / 10卷
关键词
Machine learning; Optimization; Structural color; INVERSE DESIGN; TRANSMISSION;
D O I
10.1016/j.rio.2022.100334
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Neural networks were recently introduced in the field of nanophotonics as an alternative and powerful way to obtain the non-linear mapping between the geometry and composition of arbitrary nanophotonic structures on one hand, and their associated properties and functions on the other. Taking into account the recent advances in the application of the machine learning concept to the design of nanophotonic devices, we employ this tool for the optimization of photonic materials with specific color properties. We train a deep neural network (DNN) to solve the inverse problem, i.e., to obtain the geometrical parameters of the structure that best produce a desired reflected color. The analyzed system is a single layer of core-shell spheres composed of melanin and silica embedded in air, arranged in a hexagonal matrix. The network is trained using a dataset of the three CIE 1976 (L*a*b*) color coordinates obtained from the simulated reflectance spectra of a large set of structures. The direct problem is solved using the Korringa-Kohn-Rostoker method (KKR), widely applied to calculate the optical properties of sphere composites. The color optimization approach used in this work opens up new alternatives for the design of artificial photonic structures with tunable color effects.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Color optimization of a core-shell nanoparticles layer using machine learning techniques
    Urquia, G. M.
    Inchaussandague, M. E.
    Skigin, D. C.
    RESULTS IN OPTICS, 2023, 10
  • [2] Insights into the Machine Learning Predictions of the Optical Response of Plasmon@Semiconductor Core-Shell Nanocylinders
    Vahidzadeh, Ehsan
    Shankar, Karthik
    PHOTOCHEM, 2023, 3 (01): : 155 - 170
  • [3] Test Suite Optimization Using Machine Learning Techniques: A Comprehensive Study
    Mehmood, Abid
    Ilyas, Qazi Mudassar
    Ahmad, Muneer
    Shi, Zhongliang
    IEEE ACCESS, 2024, 12 : 168645 - 168671
  • [4] Strong circular dichroism of core-shell magnetoplasmonic nanoparticles
    Varytis, Paris
    Stefanou, Nikolaos
    Christofi, Aristi
    Papanikolaou, Nikolaos
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2015, 32 (06) : 1063 - 1069
  • [5] Glioma Grading using Machine Learning techniques: Model optimization and web deployment
    Yefou, Uriel Nguefack
    Fadlallah, Solafa
    Danford-Quainoo, Kobby
    Negho, Phanie Dianelle
    Fangnon, Dieu-Donne
    2024 IEEE INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE, IRI 2024, 2024, : 278 - 283
  • [6] Exploring the Core-shell Structure of BaTiO3-based Dielectric Ceramics Using Machine Learning Models and Interpretability Analysis
    Sun, Jiale
    Xiong, Peifeng
    Hao, Hua
    Liu, Hanxing
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2024, 39 (03): : 561 - 569
  • [7] Low energy electron attenuation lengths in core-shell nanoparticles
    Jacobs, Michael I.
    Kostko, Oleg
    Ahmed, Musahid
    Wilson, Kevin R.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (20) : 13372 - 13378
  • [8] Performance Enhancement of Inclined Core-Shell Nanowire Solar Cells Using Multivariable Optimization
    Zamani, Majid
    Kordrostami, Zoheir
    SOLAR ENERGY, 2022, 243 : 443 - 453
  • [9] A survey of machine learning techniques in structural and multidisciplinary optimization
    Ramu, Palaniappan
    Thananjayan, Pugazhenthi
    Acar, Erdem
    Bayrak, Gamze
    Park, Jeong Woo
    Lee, Ikjin
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2022, 65 (09)
  • [10] A Survey on Machine Learning Techniques for Routing Optimization in SDN
    Amin, Rashid
    Rojas, Elisa
    Aqdus, Aqsa
    Ramzan, Sadia
    Casillas-Perez, David
    Arco, Jose M.
    IEEE ACCESS, 2021, 9 : 104582 - 104611