Bounds for the eccentricity spectral radius of join digraphs with a fixed dichromatic number

被引:1
作者
Yang, Xiuwen [1 ,2 ,3 ]
Broersma, Hajo [3 ]
Wang, Ligong [2 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Sci, Xian 710121, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
[3] Univ Twente, Fac Elect Engn Math & Comp Sci, POB 217, NL-7500 AE Enschede, Netherlands
基金
中国国家自然科学基金;
关键词
Eccentricity matrix; Spectral radius; Dichromatic number; SIGNLESS LAPLACIAN; D-MAX; MATRIX; INDEX;
D O I
10.1016/j.dam.2024.06.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eccentricity matrix epsilon ( G ) of a strongly connected digraph G is defined as { d ( v i , v j ) , if d ( v i , v j ) = min { e + ( v i ) , e - ( v j ) } , epsilon ( G ) ij = 0 , otherwise ., where e + ( v i ) = max { d ( v i , v j ) | v j E V( G ) } is the out -eccentricity of the vertex v i of G , and e - ( v j ) = max { d ( v i , v j ) | v i E V( G ) } is the in -eccentricity of the vertex v j of G . The eigenvalue of epsilon ( G ) with the largest modulus is called the eccentricity spectral radius of G . In this paper, we obtain lower bounds for the eccentricity spectral radius among all join digraphs with a fixed dichromatic number. We also give upper bounds for the eccentricity spectral radius of some special join digraphs with a fixed dichromatic number. (c) 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:241 / 257
页数:17
相关论文
共 33 条
[1]  
Berman A, 1979, NONNEGATIVE MATRICES, DOI DOI 10.1137/1.9781611971262
[2]   The circular chromatic number of a digraph [J].
Bokal, D ;
Fijavz, G ;
Juvan, M ;
Kayll, PM ;
Mohar, B .
JOURNAL OF GRAPH THEORY, 2004, 46 (03) :227-240
[3]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[4]  
Cvetkovic D., 2010, An introduction to the theory of graph spectra, V75, DOI DOI 10.1017/CBO9780511801518
[5]   The Uniqueness of DMAX-Matrix Graph Invariants [J].
Dehmer, Matthias ;
Shi, Yongtang .
PLOS ONE, 2014, 9 (01)
[6]   Colorings and spectral radius of digraphs [J].
Drury, Stephen ;
Lin, Huiqiu .
DISCRETE MATHEMATICS, 2016, 339 (01) :327-332
[7]   On the largest and least eigenvalues of eccentricity matrix of trees [J].
He, Xiaocong ;
Lu, Lu .
DISCRETE MATHEMATICS, 2022, 345 (01)
[8]  
Horn Roger A., 2012, Matrix Analysis
[9]   A Cvetkovic-type Theorem for coloring of digraphs [J].
Kim, Jaehoon ;
Kim, Soyeon ;
Suil, O. ;
Oh, Semin .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 634 :30-36
[10]   On the eigenvalues of eccentricity matrix of graphs [J].
Lei, Xingyu ;
Wang, Jianfeng ;
Li, Guozheng .
DISCRETE APPLIED MATHEMATICS, 2021, 295 :134-147