Bounds for the eccentricity spectral radius of join digraphs with a fixed dichromatic number

被引:0
作者
Yang, Xiuwen [1 ,2 ,3 ]
Broersma, Hajo [3 ]
Wang, Ligong [2 ]
机构
[1] Xian Univ Posts & Telecommun, Sch Sci, Xian 710121, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Math & Stat, Xian 710129, Shaanxi, Peoples R China
[3] Univ Twente, Fac Elect Engn Math & Comp Sci, POB 217, NL-7500 AE Enschede, Netherlands
基金
中国国家自然科学基金;
关键词
Eccentricity matrix; Spectral radius; Dichromatic number; SIGNLESS LAPLACIAN; D-MAX; MATRIX; INDEX;
D O I
10.1016/j.dam.2024.06.019
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The eccentricity matrix epsilon ( G ) of a strongly connected digraph G is defined as { d ( v i , v j ) , if d ( v i , v j ) = min { e + ( v i ) , e - ( v j ) } , epsilon ( G ) ij = 0 , otherwise ., where e + ( v i ) = max { d ( v i , v j ) | v j E V( G ) } is the out -eccentricity of the vertex v i of G , and e - ( v j ) = max { d ( v i , v j ) | v i E V( G ) } is the in -eccentricity of the vertex v j of G . The eigenvalue of epsilon ( G ) with the largest modulus is called the eccentricity spectral radius of G . In this paper, we obtain lower bounds for the eccentricity spectral radius among all join digraphs with a fixed dichromatic number. We also give upper bounds for the eccentricity spectral radius of some special join digraphs with a fixed dichromatic number. (c) 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:241 / 257
页数:17
相关论文
共 33 条
  • [1] Berman A., 1979, Nonnegative Matrices in the Mathematical Science
  • [2] The circular chromatic number of a digraph
    Bokal, D
    Fijavz, G
    Juvan, M
    Kayll, PM
    Mohar, B
    [J]. JOURNAL OF GRAPH THEORY, 2004, 46 (03) : 227 - 240
  • [3] Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
  • [4] Cvetkovic Dragos M., 2010, An Introduction to the Theory of Graph Spectra, V75, DOI DOI 10.1017/CBO9780511801518
  • [5] The Uniqueness of DMAX-Matrix Graph Invariants
    Dehmer, Matthias
    Shi, Yongtang
    [J]. PLOS ONE, 2014, 9 (01):
  • [6] Colorings and spectral radius of digraphs
    Drury, Stephen
    Lin, Huiqiu
    [J]. DISCRETE MATHEMATICS, 2016, 339 (01) : 327 - 332
  • [7] On the largest and least eigenvalues of eccentricity matrix of trees
    He, Xiaocong
    Lu, Lu
    [J]. DISCRETE MATHEMATICS, 2022, 345 (01)
  • [8] Horn R. A., 2012, Matrix Analysis, V2nd, DOI [10.1017/CBO9780511810817, DOI 10.1017/CBO9780511810817]
  • [9] A Cvetkovic-type Theorem for coloring of digraphs
    Kim, Jaehoon
    Kim, Soyeon
    Suil, O.
    Oh, Semin
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 634 : 30 - 36
  • [10] On the eigenvalues of eccentricity matrix of graphs
    Lei, Xingyu
    Wang, Jianfeng
    Li, Guozheng
    [J]. DISCRETE APPLIED MATHEMATICS, 2021, 295 : 134 - 147