Brain tumor segmentation based on the U-NET plus plus network with efficientnet encoder

被引:0
|
作者
Chen, Yunyi [1 ,2 ]
Quan, Lan [3 ,4 ,5 ]
Long, Chao [6 ]
Chen, Yuxuan [1 ,2 ]
Zu, Li [1 ,7 ]
Huang, Chenxi [1 ]
机构
[1] Hainan Normal Univ, Key Open Project Key Lab Data Sci & Intelligence, Haikou, Hainan, Peoples R China
[2] Xiamen Univ, Dept Software Engn, Sch Informat, Xiamen, Fujian, Peoples R China
[3] Xiamen Univ, Sch Med, Affiliated Hosp Xiamen Univ 1, Dept Neurol, Xiamen, Fujian, Peoples R China
[4] Xiamen Univ, Sch Med, Dept Neurosci, Affiliated Hosp Xiamen Univ 1, Xiamen, Fujian, Peoples R China
[5] Xiamen Key Lab Brain Ctr, Xiamen, Fujian, Peoples R China
[6] La Consolac Univ Philippines, Sch Grad Studies, Malolos, Philippines
[7] Hainan Normal Univ, Coll Math & Stat, Haikou, Hainan, Peoples R China
关键词
Brain tumor segmentation; EfficientNet encoder; U-Net plus plus framework;
D O I
10.3233/THC-248016
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
BACKGROUND: Brain tumor is a highly destructive, aggressive, and fatal disease. The presence of brain tumors can disrupt the brain's ability to control body movements, consciousness, sensations, thoughts, speech, and memory. Brain tumors are often accompanied by symptoms like epilepsy, headaches, and sensory loss, leading to varying degrees of cognitive impairment in affected patients. OBJECTIVE: The study goal is to develop an effective method to detect and segment brain tumor with high accurancy. METHODS: This paper proposes a novel U-Net++ network using EfficientNet as the encoder to segment brain tumors based on MRI images. We adjust the original U-Net++ model by removing the dense skip connections between sub-networks to simplify computational complexity and improve model efficiency, while the connections of feature maps at the same resolution level are retained to bridge the semantic gap. RESULTS: The proposed segmentation model is trained and tested on Kaggle's LGG brain tumor dataset, which obtains a satisfying performance with a Dice coefficient of 0.9180. CONCLUSION: This paper conducts research on brain tumor segmentation, using the U-Net++ network with EfficientNet as an encoder to segment brain tumors based on MRI images. We adjust the original U-Net++ model to simplify calculations and maintains rich semantic spatial features at the same time. Multiple loss functions are compared in this study and their effectiveness are discussed. The experimental results shows the model achieves a high segmention result with Dice coefficient of 0.9180.
引用
收藏
页码:S183 / S195
页数:13
相关论文
共 50 条
  • [21] MAU-Net: Mixed attention U-Net for MRI brain tumor segmentation
    Zhang, Yuqing
    Han, Yutong
    Zhang, Jianxin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (12) : 20510 - 20527
  • [22] DCU-Net: Multi-scale U-Net for brain tumor segmentation
    Yang, Tiejun
    Zhou, Yudan
    Li, Lei
    Zhu, Chunhua
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (04) : 709 - 726
  • [23] NDNN based U-Net: An Innovative 3D Brain Tumor Segmentation Method
    Trivedi, Sandeep
    Patel, Nikhil
    Faruqui, Nuruzzaman
    2022 IEEE 13TH ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2022, : 538 - 546
  • [24] 3D U-Net Based Brain Tumor Segmentation and Survival Days Prediction
    Wang, Feifan
    Jiang, Runzhou
    Zheng, Liqin
    Meng, Chun
    Biswal, Bharat
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2019), PT I, 2020, 11992 : 131 - 141
  • [25] MRI Brain Tumor Segmentation Using 3D U-Net with Dense Encoder Blocks and Residual Decoder Blocks
    Tie, Juhong
    Peng, Hui
    Zhou, Jiliu
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2021, 128 (02): : 427 - 445
  • [26] U-Net architecture variants for brain tumor segmentation of histogram corrected images
    Lefkovits, Szidonia
    Lefkovits, Laszlo
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2022, 14 (01) : 49 - 74
  • [27] Residual 3D U-Net with Localization for Brain Tumor Segmentation
    Demoustier, Marc
    Khemir, Ines
    Nguyen, Quoc Duong
    Martin-Gaffe, Lucien
    Boutry, Nicolas
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 389 - 399
  • [28] CU-Net: Cascaded U-Net with Loss Weighted Sampling for Brain Tumor Segmentation
    Liu, Hongying
    Shen, Xiongjie
    Shang, Fanhua
    Ge, Feihang
    Wang, Fei
    MULTIMODAL BRAIN IMAGE ANALYSIS AND MATHEMATICAL FOUNDATIONS OF COMPUTATIONAL ANATOMY, 2019, 11846 : 102 - 111
  • [29] Effect of learning parameters on the performance of U-Net Model in segmentation of Brain tumor
    Das, Suchsimita
    Swain, Mahesh ku.
    Nayak, G. K.
    Saxena, Sanjay
    Satpathy, S. C.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (24) : 34717 - 34735
  • [30] Brain Tumor Segmentation Using Attention Activated U-Net with Positive Mining
    Singh, Har Shwinder
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT I, 2022, 12962 : 431 - 440