Monochromatic triangles in the max-norm plane

被引:0
作者
Natalchenko, Alexander [1 ]
Sagdeev, Arsenii [2 ]
机构
[1] MIPT, Moscow, Russia
[2] Alfred Reny Inst Math, Budapest, Hungary
关键词
DISTANCE GRAPHS; CHROMATIC NUMBER; RAMSEY; SETS;
D O I
10.1016/j.ejc.2024.103977
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For all non -degenerate triangles T , we determine the minimum number of colors needed to color the plane such that no max -norm isometric copy of T is monochromatic. (c) 2024 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 32 条
  • [1] Aichholzer O., 2019, 35 EUR WORKSH COMP G
  • [2] Distance graphs and T-coloring
    Chang, GJ
    Liu, DDF
    Zhu, XD
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1999, 75 (02) : 259 - 269
  • [3] Cheng XB, 2023, Arxiv, DOI arXiv:2305.18218
  • [4] On the chromatic numbers of small-dimensional Euclidean spaces
    Cherkashin, Danila
    Kulikov, Anatoly
    Raigorodskii, Andrei
    [J]. DISCRETE APPLIED MATHEMATICS, 2018, 243 : 125 - 131
  • [5] CHILAKAMARRI KB, 1991, GEOMETRIAE DEDICATA, V37, P345
  • [6] Currier G, 2024, Arxiv, DOI [arXiv:2402.14197, 10.48550/arXiv.2402.14197,arXiv, DOI 10.48550/ARXIV.2402.14197,ARXIV]
  • [7] de Bruijn N.G., 1951, P K NED AKAD WETENSC, V13, P369
  • [8] de Grey A., 2018, Geombinatorics, V28, P559
  • [9] Erdos P., 1975, INFINITE FINITE SETS, V10, P559
  • [10] Erdos P., 1973, J COMB THEORY A, V14, P341