Temporal RPN Learning for Weakly-Supervised Temporal Action Localization

被引:0
作者
Huang, Jing [1 ]
Kong, Ming [2 ,3 ]
Chen, Luyuan [4 ]
Liang, Tian [1 ]
Zhu, Qiang [2 ]
机构
[1] Zhejiang Univ, Hangzhou 310058, Peoples R China
[2] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310058, Peoples R China
[3] Hikvis Res Inst, Hangzhou 310051, Peoples R China
[4] Beijing Informat Sci & Technol Univ, Beijing 100101, Peoples R China
来源
ASIAN CONFERENCE ON MACHINE LEARNING, VOL 222 | 2023年 / 222卷
关键词
Weakly-Supervised Learning; Action Localization; Temporal Region Proposal;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weakly-Supervised Temporal Action Localization (WSTAL) aims to train an action instance localization model from untrimmed videos with only video-level labels, similar to the Object Detection (OD) task. Existing Top-k MIL-based WSTAL methods cannot flexibly define the learning space, which limits the model's learning efficiency and performance. Faster R-CNN is a classic two-stage object detection architecture with an efficient Region Proposal Network. This paper successfully migrates the Faster R-CNN liked two-stage architecture to the WSTAL task: first to build a T-RPN and integrate it with the traditional WSTAL framework; and then to propose a pseudo label generation mechanism to enable the T-RPN learning without temporal annotations. Our new framework has achieved breakthrough performances on THUMOS-14 and ActivityNet-v1.2 datasets, and comprehensive ablation experiments have verified the effectiveness of the innovations. Code will be available at: https://github.com/ZJUHJ/TRPN.
引用
收藏
页数:16
相关论文
共 50 条
[41]   Weakly Supervised Regional and Temporal Learning for Facial Action Unit Recognition [J].
Yan, Jingwei ;
Wang, Jingjing ;
Li, Qiang ;
Wang, Chunmao ;
Pu, Shiliang .
IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 :1760-1772
[42]   Uncertainty Guided Collaborative Training for Weakly Supervised and Unsupervised Temporal Action Localization [J].
Yang, Wenfei ;
Zhang, Tianzhu ;
Zhang, Yongdong ;
Wu, Feng .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) :5252-5267
[43]   Deep Learning for Weakly-Supervised Object Detection and Localization: A Survey [J].
Shao, Feifei ;
Chen, Long ;
Shao, Jian ;
Ji, Wei ;
Xiao, Shaoning ;
Ye, Lu ;
Zhuang, Yueting ;
Xiao, Jun .
NEUROCOMPUTING, 2022, 496 :192-207
[44]   Weakly-Supervised Temporal Action Alignment Driven by Unbalanced Spectral Fused Gromov-Wasserstein Distance [J].
Luo, Dixin ;
Wang, Yutong ;
Yue, Angxiao ;
Xu, Hongteng .
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022,
[45]   Supervised Temporal 2024InternationalJointConferenceonNeuralNetworks( IJCNN)| 979-8-3503-5931-2/24/$31.00©2024IEEE| DOI:ATCE: Adaptive Temporal Context Exploitation for Weakly-Supervised Temporal Action Localization [J].
Yang, Jiantao ;
Liu, Sheng ;
Feng, Yuan ;
Tian, Xiaopeng ;
Zhang, Yineng ;
Pan, Songqi .
2024 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN 2024, 2024,
[46]   Weakly supervised temporal action localization with actionness-guided false positive suppression [J].
Li, Zhilin ;
Wang, Zilei ;
Liu, Qinying .
NEURAL NETWORKS, 2024, 175
[47]   Integration of Global and Local Knowledge for Foreground Enhancing in Weakly Supervised Temporal Action Localization [J].
Zhang, Tianyi ;
Li, Ronglu ;
Feng, Pengming ;
Zhang, Rubo .
IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 :8476-8487
[48]   Weakly supervised temporal action localization via a multimodal feature map diffusion process [J].
Zou, Yuanbing ;
Zhao, Qingjie ;
Li, Shanshan .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 156
[49]   Weakly-supervised spatial-temporal video grounding via spatial-temporal annotation on a frame [J].
Luo, Shu ;
Jiang, Shijie ;
Cao, Da ;
Deng, Huangxiao ;
Wang, Jiawei ;
Qin, Zheng .
KNOWLEDGE-BASED SYSTEMS, 2025, 314
[50]   TEMPORAL SELF-PACED PROPOSAL LEARNING FOR WEAKLY-SUPERVISED VIDEO MOMENT RETRIEVAL AND HIGHLIGHT DETECTION [J].
Zhu, Liqing ;
Jiang, Xun ;
Shen, Fumin ;
Wang, Guoqing ;
Yang, Yang ;
Xu, Xing .
2024 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME 2024, 2024,