Machine learning for real-time detection of local heat accumulation in metal additive manufacturing

被引:1
|
作者
Guirguis, David [1 ,2 ]
Tucker, Conrad [2 ,3 ]
Beuth, Jack [1 ,2 ]
机构
[1] Carnegie Mellon Univ, Next Mfg Ctr, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Mech Engn Dept, Pittsburgh, PA USA
[3] Carnegie Mellon Univ, Machine Learning Dept, Pittsburgh, PA USA
关键词
Powder bed fusion; Anomalies detection; Heat accumulation; Thermography; Additive manufacturing; IR imaging; Machine learning; TOPOLOGY OPTIMIZATION; RESIDUAL-STRESS; LASER; MICROSTRUCTURE; COMPONENTS; ENERGY;
D O I
10.1016/j.matdes.2024.112933
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Metal additive manufacturing is associated with thermal cycles of high rates of heating, melting, cooling, and solidification. Some areas within the build experience thermal cycles that depend on the paths of the energy source. Additionally, geometrical features, such as thin walls and overhangs, can lead to heat accumulation, potentially affecting the microstructure, fatigue life, and induced residual stresses that may lead to dimensional distortion and cracking. The identification of significant heat accumulation can be used for part quality monitoring to inform the design process, enhance the quality of printed parts, and optimize the process parameters. This study aims to efficiently identify heat accumulation with affordable in-situ infrared imaging for further characterization and mitigation to enhance the quality of printed parts. A computational framework employing machine learning is developed to identify zones of local heat accumulation in real time. The effectiveness of this approach is demonstrated by experiments conducted on a build with a wide variety of geometrical features. In addition, characterization and detailed analyses of detected local heat accumulation zones are provided.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Machine learning-enabled real-time anomaly detection for electron beam powder bed fusion additive manufacturing
    Cannizzaro, Davide
    Antonioni, Paolo
    Ponzio, Francesco
    Galati, Manuela
    Patti, Edoardo
    Di Cataldo, Santa
    JOURNAL OF INTELLIGENT MANUFACTURING, 2025, 36 (03) : 2105 - 2119
  • [2] Machine learning approaches for real-time process anomaly detection in wire arc additive manufacturing
    Mattera, Giulio
    Nele, Luigi
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2025, 137 (5-6) : 2863 - 2888
  • [3] Machine learning prediction of mechanical properties in metal additive manufacturing
    Akbari, Parand
    Zamani, Masoud
    Mostafaei, Amir
    ADDITIVE MANUFACTURING, 2024, 91
  • [4] Innovative liquid metal strategy for real-time thermal control in additive manufacturing
    Zhang, Xiaohan
    He, Yi
    Zhao, Shusen
    Ding, Hongtao
    Hu, Yaowu
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2023, 322
  • [5] Perspectives of using machine learning in laser powder bed fusion for metal additive manufacturing
    Sing, S. L.
    Kuo, C. N.
    Shih, C. T.
    Ho, C. C.
    Chua, C. K.
    VIRTUAL AND PHYSICAL PROTOTYPING, 2021, 16 (03) : 372 - 386
  • [6] A Real-Time Defect Detection Strategy for Additive Manufacturing Processes Based on Deep Learning and Machine Vision Technologies
    Wang, Wei
    Wang, Peiren
    Zhang, Hanzhong
    Chen, Xiaoyi
    Wang, Guoqi
    Lu, Yang
    Chen, Min
    Liu, Haiyun
    Li, Ji
    MICROMACHINES, 2024, 15 (01)
  • [7] Process monitoring and machine learning for defect detection in laser-based metal additive manufacturing
    Herzog, T.
    Brandt, M.
    Trinchi, A.
    Sola, A.
    Molotnikov, A.
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024, 35 (04) : 1407 - 1437
  • [8] Defect Classification for Additive Manufacturing with Machine Learning
    Altmann, Mika Leon
    Benthien, Thiemo
    Ellendt, Nils
    Toenjes, Anastasiya
    MATERIALS, 2023, 16 (18)
  • [9] A survey of machine learning in additive manufacturing technologies
    Jiang, Jingchao
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2023, 36 (09) : 1258 - 1280
  • [10] MeltpoolNet: Melt pool characteristic prediction in Metal Additive Manufacturing using machine learning
    Akbari, Parand
    Ogoke, Francis
    Kao, Ning-Yu
    Meidani, Kazem
    Yeh, Chun-Yu
    Lee, William
    Farimani, Amir Barati
    ADDITIVE MANUFACTURING, 2022, 55