Geometric realization of the Sasa-Satsuma equation on the symmetric space SU(3)/U(2)

被引:0
作者
Zhong, Shiping [1 ]
Zhao, Zehui [1 ]
机构
[1] Gannan Normal Univ, Sch Math & Comp Sci, Ganzhou 341000, Jiangxi, Peoples R China
关键词
The Sasa-Satsuma equation; Geometric realization; Moving Sym-Pohlmeyer curves; Uniqueness; NONLINEAR SCHRODINGER-EQUATION; INVERSE-SCATTERING APPROACH; SOLITON-SOLUTIONS; INTEGRABILITY; ENVELOPE; WAVES;
D O I
10.1016/j.geomphys.2024.105190
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The analytic property of the Sasa-Satsuma equation has been well-explored via using an array of mathematical tools (such as the inverse scattering transformation, the Hirota bilinear method and the Darboux transformation). This paper devotes to exploring geometric properties of this equation via the zero curvature representation in terms of the language in Yang-Mills theory. The generalized Landau-Lifshitz type model of SymPohlmeyer moving curves evolving in the symmetric Lie algebra g = k circle plus m with initial data being suitably restricted is gauge equivalent to the Sasa-Satsuma equation. This gives a geometric realization of the Sasa-Satsuma equation. (c) 2024 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 49 条
  • [1] Rogue wave spectra of the Sasa-Satsuma equation
    Akhmediev, N.
    Soto-Crespo, J. M.
    Devine, N.
    Hoffmann, N. P.
    [J]. PHYSICA D-NONLINEAR PHENOMENA, 2015, 294 : 37 - 42
  • [2] Arvanitoyeorgos A., 2003, AMS Student Mathematical Library, P22
  • [3] Sasa-Satsuma equation: Soliton on a background and its limiting cases
    Bandelow, U.
    Akhmediev, N.
    [J]. PHYSICAL REVIEW E, 2012, 86 (02):
  • [4] MODULATION INSTABILITY IN THE REGION OF MINIMUM GROUP-VELOCITY DISPERSION OF SINGLE-MODE OPTICAL FIBERS VIA AN EXTENDED NONLINEAR SCHRODINGER-EQUATION
    CAVALCANTI, SB
    CRESSONI, JC
    DACRUZ, HR
    GOUVEIANETO, AS
    [J]. PHYSICAL REVIEW A, 1991, 43 (11): : 6162 - 6165
  • [5] Twisted rogue-wave pairs in the Sasa-Satsuma equation
    Chen, Shihua
    [J]. PHYSICAL REVIEW E, 2013, 88 (02):
  • [6] Ding Q., 2023, Sci. Sin., Math., DOI [10.1360/SSM-2023-0067, DOI 10.1360/SSM-2023-0067]
  • [7] On Geometric Realization of the General Manakov System
    Ding, Qing
    Zhong, Shiping
    [J]. CHINESE ANNALS OF MATHEMATICS SERIES B, 2023, 44 (05) : 753 - 764
  • [8] The complex 2-sphere in DOUBLE-STRUCK CAPITAL C3 and Schrodinger flows
    Ding, Qing
    Zhong, Shiping
    [J]. SCIENCE CHINA-MATHEMATICS, 2020, 63 (04) : 777 - 788
  • [9] Vortex filament on symmetric Lie algebras and generalized bi-Schrodinger flows
    Ding, Qing
    Wang, Youde
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2018, 290 (1-2) : 167 - 193
  • [10] The noncommutative KdV equation and its para-Kahler structure
    Ding Qing
    He ZhiZhou
    [J]. SCIENCE CHINA-MATHEMATICS, 2014, 57 (07) : 1505 - 1516