3D Medical Axial Transformer: A Lightweight Transformer Model for 3D Brain Tumor Segmentation

被引:0
|
作者
Liu, Cheng [1 ]
Kiryu, Hisanori [1 ]
机构
[1] Univ Tokyo, Dept Computat Biol & Med Sci, Tokyo, Japan
关键词
Deep learning; 3D brain tumor segmentation; 3D Transformer; axial attention; self-distillation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, Transformer-based models have gained attention in the field of medical image segmentation, with research exploring ways to integrate them with established architectures such as Unet. However, the high computational demands of these models have led most current approaches to focus on segmenting 2D slices of MRI or CT images, which can limit the ability of the model to learn semantic information in the depth axis and result in output with uneven edges. Additionally, the small size of medical image datasets, particularly those for brain tumor segmentation, poses a challenge for training transformer models. To address these issues, we propose 3D Medical Axial Transformer (MAT), a lightweight, end-to-end model for 3D brain tumor segmentation that employs an axial attention mechanism to reduce computational demands and -distillation to improve performance on small datasets. Results indicate that our approach, which has fewer parameters and a simpler structure than other models, achieves superior performance and produces clearer output boundaries, making it more suitable for clinical applications. The code is available at https://github.com/AsukaDaisuki/MAT.
引用
收藏
页码:799 / 813
页数:15
相关论文
共 50 条
  • [41] UT-MT: A Semi-Supervised Model of Fusion Transformer for 3D Medical Image Segmentation
    Liu, Xianchang
    Liu, Peishun
    Wang, Jinyu
    Wang, Qinshuo
    Guo, Qing
    Tang, Ruichun
    2023 8TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA ANALYTICS, ICCCBDA, 2023, : 190 - 196
  • [42] Transformer Enhanced Hierarchical 3D Point Cloud Semantic Segmentation
    Liu, Yaohua
    Ma, Yue
    Xu, Min
    2ND INTERNATIONAL CONFERENCE ON APPLIED MATHEMATICS, MODELLING, AND INTELLIGENT COMPUTING (CAMMIC 2022), 2022, 12259
  • [43] Graph Transformer for 3D point clouds classification and semantic segmentation
    Zhou, Wei
    Wang, Qian
    Jin, Weiwei
    Shi, Xinzhe
    He, Ying
    COMPUTERS & GRAPHICS-UK, 2024, 124
  • [44] Automated multi-modal Transformer network (AMTNet) for 3D medical images segmentation
    Zheng, Shenhai
    Tan, Jiaxin
    Jiang, Chuangbo
    Li, Laquan
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (02):
  • [45] Efficient combined algorithm of Transformer and U-Net for 3D medical image segmentation
    Zhang, Mingyan
    Wang, Aixia
    Yang, Gang
    Li, Jingjiao
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4377 - 4382
  • [46] Abstract: 3D Medical Image Segmentation with Transformer-based Scaling of ConvNets MedNeXt
    Roy, Saikat
    Koehler, Gregor
    Baumgartner, Michael
    Ulrich, Constantin
    Isensee, Fabian
    Jaeger, Paul F.
    Maier-Hein, Klaus
    BILDVERARBEITUNG FUR DIE MEDIZIN 2024, 2024, : 79 - 79
  • [47] TDPC-Net: Multi-scale lightweight and efficient 3D segmentation network with a 3D attention mechanism for brain tumor segmentation
    Li, Yixuan
    Kang, Jie
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2025, 99
  • [48] 3D bi-directional transformer U-Net for medical image segmentation
    Fu, Xiyao
    Sun, Zhexian
    Tang, Haoteng
    Zou, Eric M.
    Huang, Heng
    Wang, Yong
    Zhan, Liang
    FRONTIERS IN BIG DATA, 2023, 5
  • [49] HCA-former: Hybrid Convolution Attention Transformer for 3D Medical Image Segmentation
    Yang, Fan
    Wang, Fan
    Dong, Pengwei
    Wang, Bo
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 90
  • [50] SPCTNet: A Series-Parallel CNN and Transformer Network for 3D Medical Image Segmentation
    Yu, Bin
    Zhou, Quan
    Zhang, Xuming
    ARTIFICIAL INTELLIGENCE, CICAI 2023, PT I, 2024, 14473 : 376 - 387