3D Medical Axial Transformer: A Lightweight Transformer Model for 3D Brain Tumor Segmentation

被引:0
|
作者
Liu, Cheng [1 ]
Kiryu, Hisanori [1 ]
机构
[1] Univ Tokyo, Dept Computat Biol & Med Sci, Tokyo, Japan
关键词
Deep learning; 3D brain tumor segmentation; 3D Transformer; axial attention; self-distillation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, Transformer-based models have gained attention in the field of medical image segmentation, with research exploring ways to integrate them with established architectures such as Unet. However, the high computational demands of these models have led most current approaches to focus on segmenting 2D slices of MRI or CT images, which can limit the ability of the model to learn semantic information in the depth axis and result in output with uneven edges. Additionally, the small size of medical image datasets, particularly those for brain tumor segmentation, poses a challenge for training transformer models. To address these issues, we propose 3D Medical Axial Transformer (MAT), a lightweight, end-to-end model for 3D brain tumor segmentation that employs an axial attention mechanism to reduce computational demands and -distillation to improve performance on small datasets. Results indicate that our approach, which has fewer parameters and a simpler structure than other models, achieves superior performance and produces clearer output boundaries, making it more suitable for clinical applications. The code is available at https://github.com/AsukaDaisuki/MAT.
引用
收藏
页码:799 / 813
页数:15
相关论文
共 50 条
  • [1] DiffSwinTr: A diffusion model using 3D Swin Transformer for brain tumor segmentation
    Zhu, Junan
    Zhu, Hongxin
    Jia, Zhaohong
    Ma, Ping
    INTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, 2024, 34 (03)
  • [2] Combining CNNs with Transformer for Multimodal 3D MRI Brain Tumor Segmentation
    Dobko, Mariia
    Kolinko, Danylo-Ivan
    Viniavskyi, Ostap
    Yelisieiev, Yurii
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 232 - 241
  • [3] 3D Swin Transformer for Partial Medical Auto Segmentation
    Rangnekar, Aneesh
    Jiang, Jue
    Veeraraghavan, Harini
    FAST, LOW-RESOURCE, AND ACCURATE ORGAN AND PAN-CANCER SEGMENTATION IN ABDOMEN CT, FLARE 2023, 2024, 14544 : 222 - 235
  • [4] A Robust Volumetric Transformer for Accurate 3D Tumor Segmentation
    Peiris, Himashi
    Hayat, Munawar
    Chen, Zhaolin
    Egan, Gary
    Harandi, Mehrtash
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT V, 2022, 13435 : 162 - 172
  • [5] SwinBTS: A Method for 3D Multimodal Brain Tumor Segmentation Using Swin Transformer
    Jiang, Yun
    Zhang, Yuan
    Lin, Xin
    Dong, Jinkun
    Cheng, Tongtong
    Liang, Jing
    BRAIN SCIENCES, 2022, 12 (06)
  • [6] ETUNet:Exploring efficient transformer enhanced UNet for 3D brain tumor segmentation
    Zhang, Wang
    Chen, Shanxiong
    Ma, Yuqi
    Liu, Yu
    Cao, Xu
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 171
  • [7] FATUnetr:fully attention Transformer for 3D medical image segmentation
    Li, QingFeng
    Tong, Jigang
    Yang, Sen
    Du, Shengzhi
    2024 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, ICMA 2024, 2024, : 1415 - 1419
  • [8] nnFormer: Volumetric Medical Image Segmentation via a 3D Transformer
    Zhou, Hong-Yu
    Guo, Jiansen
    Zhang, Yinghao
    Han, Xiaoguang
    Yu, Lequan
    Wang, Liansheng
    Yu, Yizhou
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 4036 - 4045
  • [9] 3D PSwinBTS: An efficient transformer-based Unet using 3D parallel shifted windows for brain tumor segmentation
    Liang, Junjie
    Yang, Cihui
    Zeng, Lingguo
    DIGITAL SIGNAL PROCESSING, 2022, 131
  • [10] LW-CTrans: A lightweight hybrid network of CNN and Transformer for 3D medical image segmentation
    Kuang, Hulin
    Wang, Yahui
    Tana, Xianzhen
    Yang, Jialin
    Sun, Jiarui
    Liu, Jin
    Qiu, Wu
    Zhang, Jingyang
    Zhang, Jiulou
    Yang, Chunfeng
    Wang, Jianxin
    Chen, Yang
    MEDICAL IMAGE ANALYSIS, 2025, 102