Subset Models for Multivariate Time Series Forecast

被引:0
作者
Saldanha, Raphael [1 ]
Ribeiro, Victor [2 ]
Pena, Eduardo H. M. [3 ]
Pedroso, Marcel [4 ]
Akbarinia, Reza [1 ]
Valduriez, Patrick [1 ,2 ]
Porto, Fabio [2 ]
机构
[1] Univ Montpellier, Inria, CNRS, LIRMM, Montpellier, France
[2] DEXL, LNCC, Petropolis, RJ, Brazil
[3] UTFPR, DACOM, Campo Mourao, Brazil
[4] Fundacao Oswaldo Cruz, ICICT, LIS, PCDaS, Rio De Janeiro, Brazil
来源
2024 IEEE 40TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING WORKSHOP, ICDEW | 2024年
关键词
domain diversity; subsets; machine learning; dengue; climate; BRAZIL;
D O I
10.1109/ICDEW61823.2024.00016
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multivariate time series find extensive applications in conjunction with machine learning methodologies for scenario forecasting across various domains. Nevertheless, certain domains exhibit inherent complexities and diversities, which detrimentally impact the predictive efficacy of global models. This ongoing study introduces a Subset Modeling Framework designed to acknowledge the inherent diversity within a domain's multivariate space. Comparative assessments between subset models and global models are conducted in terms of performance, revealing compelling findings and suggesting the potential for further exploration and refinement of this novel framework.
引用
收藏
页码:86 / 90
页数:5
相关论文
共 26 条
[1]   Time-series clustering - A decade review [J].
Aghabozorgi, Saeed ;
Shirkhorshidi, Ali Seyed ;
Teh Ying Wah .
INFORMATION SYSTEMS, 2015, 53 :16-38
[2]   An extensive comparative study of cluster validity indices [J].
Arbelaitz, Olatz ;
Gurrutxaga, Ibai ;
Muguerza, Javier ;
Perez, Jesus M. ;
Perona, Inigo .
PATTERN RECOGNITION, 2013, 46 (01) :243-256
[3]   Forecasting across time series databases using recurrent neural networks on groups of similar series: A clustering approach [J].
Bandara, Kasun ;
Bergmeir, Christoph ;
Smyl, Slawek .
EXPERT SYSTEMS WITH APPLICATIONS, 2020, 140 (140)
[4]   Expansion of the dengue transmission area in Brazil: the role of climate and cities [J].
Barcellos, Christovam ;
Lowe, Rachel .
TROPICAL MEDICINE & INTERNATIONAL HEALTH, 2014, 19 (02) :159-168
[5]  
Berndt D. J., 1994, KDD WORKSHO, V10, P359, DOI DOI 10.5555/3000850.3000887
[6]   Time Series Clustering to Improve Dengue Cases Forecasting with Deep Learning [J].
Bogado, J., V ;
Stalder, D. H. ;
Schaerer, C. E. ;
Gomez-Guerrero, S. .
2021 XLVII LATIN AMERICAN COMPUTING CONFERENCE (CLEI 2021), 2021,
[7]   Dengue Prediction in Latin America Using Machine Learning and the One Health Perspective: A Literature Review [J].
Cabrera, Maritza ;
Leake, Jason ;
Naranjo-Torres, Jose ;
Valero, Nereida ;
Cabrera, Julio C. ;
Rodriguez-Morales, Alfonso J. .
TROPICAL MEDICINE AND INFECTIOUS DISEASE, 2022, 7 (10)
[8]   Research on dynamic time warping multivariate time series similarity matching based on shape feature and inclination angle [J].
Cao, Danyang ;
Liu, Jie .
JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2016, 5
[9]   Forecast of Dengue Incidence Using Temperature and Rainfall [J].
Hii, Yien Ling ;
Zhu, Huaiping ;
Ng, Nawi ;
Ng, Lee Ching ;
Rocklov, Joacim .
PLOS NEGLECTED TROPICAL DISEASES, 2012, 6 (11)
[10]   Dengue models based on machine learning techniques: A systematic literature review [J].
Hoyos, William ;
Aguilar, Jose ;
Toro, Mauricio .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2021, 119