Automated rating of background parenchymal enhancement in MRI of extremely dense breasts without compromising the association with breast cancer in the DENSE trial

被引:0
作者
Wang, Hui [1 ]
van der Velden, Bas H. M. [1 ]
Verburg, Erik [1 ]
Bakker, Marije F. [2 ]
Pijnappel, Ruud M. [3 ]
Veldhuis, Wouter B. [3 ]
van Gils, Carla H. [2 ]
Gilhuijs, Kenneth G. A. [1 ,4 ]
机构
[1] Univ Med Ctr Utrecht, Image Sci Inst, Utrecht, Netherlands
[2] Julius Ctr Hlth Sci & Primary Care, Utrecht, Netherlands
[3] Univ Med Ctr Utrecht, Dept Radiol, Utrecht, Netherlands
[4] Univ Med Ctr Utrecht, Q-02-4-45,POB 85500, NL-3508 GA Utrecht, Netherlands
关键词
Background Parenchymal Enhancement; Breast MRI; Machine learning; Dense breasts; NEOADJUVANT CHEMOTHERAPY; MAMMOGRAPHIC DENSITY; WOMEN;
D O I
10.1016/j.ejrad.2024.111442
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives: Background parenchymal enhancement (BPE) on dynamic contrast-enhanced MRI (DCE-MRI) as rated by radiologists is subject to inter- and intrareader variability. We aim to automate BPE category from DCE-MRI. Methods: This study represents a secondary analysis of the Dense Tissue and Early Breast Neoplasm Screening trial. 4553 women with extremely dense breasts who received supplemental breast MRI screening in eight hospitals were included. Minimal, mild, moderate and marked BPE rated by radiologists were used as reference. Fifteen quantitative MRI features of the fibroglandular tissue were extracted to predict BPE using Random Forest, Na & iuml;ve Bayes, and KNN classifiers. Majority voting was used to combine the predictions. Internal-external validation was used for training and validation. The inverse-variance weighted mean accuracy was used to express mean performance across the eight hospitals. Cox regression was used to verify non inferiority of the association between automated rating and breast cancer occurrence compared to the association for manual rating. Results: The accuracy of majority voting ranged between 0.56 and 0.84 across the eight hospitals. The weighted mean prediction accuracy for the four BPE categories was 0.76. The hazard ratio (HR) of BPE for breast cancer occurrence was comparable between automated rating and manual rating (HR = 2.12 versus HR = 1.97, P = 0.65 for mild/moderate/marked BPE relative to minimal BPE). Conclusion: It is feasible to rate BPE automatically in DCE-MRI of women with extremely dense breasts without compromising the underlying association between BPE and breast cancer occurrence. The accuracy for minimal BPE is superior to that for other BPE categories.
引用
收藏
页数:6
相关论文
共 36 条
  • [1] Population-Based Assessment of the Association Between Magnetic Resonance Imaging Background Parenchymal Enhancement and Future Primary Breast Cancer Risk
    Arasu, Vignesh A.
    Miglioretti, Diana L.
    Sprague, Brian L.
    Alsheik, Nila H.
    Buist, Diana S. M.
    Henderson, Louise M.
    Herschorn, Sally D.
    Lee, Janie M.
    Onega, Tracy
    Rauscher, Garth H.
    Wernli, Karen J.
    Lehman, Constance D.
    Kerlikowske, Karla
    [J]. JOURNAL OF CLINICAL ONCOLOGY, 2019, 37 (12) : 954 - +
  • [2] Association of preoperative breast MRI features with locoregional recurrence after breast conservation therapy
    Bae, Min Sun
    Chang, Jung Min
    Cho, Nariya
    Han, Wonshik
    Ryu, Han Suk
    Moon, Woo Kyung
    [J]. ACTA RADIOLOGICA, 2018, 59 (04) : 409 - 417
  • [3] Supplemental MRI Screening for Women with Extremely Dense Breast Tissue
    Bakker, Marije F.
    de Lange, Stephanie V.
    Pijnappel, Ruud M.
    Mann, Ritse M.
    Peeters, Petra H. M.
    Monninkhof, Evelyn M.
    Emaus, Marleen J.
    Loo, Claudette E.
    Bisschops, Robertus H. C.
    Lobbes, Marc B. I.
    de Jong, Matthijn D. F.
    Duvivier, Katya M.
    Veltman, Jeroen
    Karssemeijer, Nico
    de Koning, Harry J.
    van Diest, Paul J.
    Mali, Willem P. T. M.
    van den Bosch, Maurice A. A. J.
    Veldhuis, Wouter B.
    van Gils, Carla H.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2019, 381 (22) : 2091 - 2102
  • [4] Fully automatic classification of breast MRI background parenchymal enhancement using a transfer learning approach
    Borkowski, Karol
    Rossi, Cristina
    Ciritsis, Alexander
    Marcon, Magda
    Hejduk, Patryk
    Stieb, Sonja
    Boss, Andreas
    Berger, Nicole
    [J]. MEDICINE, 2020, 99 (29)
  • [5] Mammographic density and the risk and detection of breast cancer
    Boyd, Norman F.
    Guo, Helen
    Martin, Lisa J.
    Sun, Limei
    Stone, Jennifer
    Fishell, Eve
    Jong, Roberta A.
    Hislop, Greg
    Chiarelli, Anna
    Minkin, Salomon
    Yaffe, Martin J.
    [J]. NEW ENGLAND JOURNAL OF MEDICINE, 2007, 356 (03) : 227 - 236
  • [6] Mammographic density and breast cancer risk: current understanding and future prospects
    Boyd, Norman F.
    Martin, Lisa J.
    Yaffe, Martin J.
    Minkin, Salomon
    [J]. BREAST CANCER RESEARCH, 2011, 13 (06)
  • [7] Multiple imputation was an efficient method for harmonizing the Mini-Mental State Examination with missing item-level data
    Burns, Richard A.
    Butterworth, Peter
    Kiely, Kim M.
    Bielak, Allison A. M.
    Luszcz, Mary A.
    Mitchell, Paul
    Christensen, Helen
    Von Sanden, Chwee
    Anstey, Kaarin J.
    [J]. JOURNAL OF CLINICAL EPIDEMIOLOGY, 2011, 64 (07) : 787 - 793
  • [8] Are Qualitative Assessments of Background Parenchymal Enhancement, Amount of Fibroglandular Tissue on MR Images, and Mammographic Density Associated with Breast Cancer Risk?
    Dontchos, Brian N.
    Rahbar, Habib
    Partridge, Savannah C.
    Korde, Larissa A.
    Lam, Diana L.
    Scheel, John R.
    Peacock, Sue
    Lehman, Constance D.
    [J]. RADIOLOGY, 2015, 276 (02) : 371 - 380
  • [9] MR Imaging as an Additional Screening Modality for the Detection of Breast Cancer in Women Aged 50-75 Years with Extremely Dense Breasts: The DENSE Trial Study Design
    Emaus, Marleen J.
    Bakker, Marije F.
    Peeters, Petra H. M.
    Loo, Claudette E.
    Mann, Ritse M.
    de Jong, Mathijn D. F.
    Bisschops, Robertus H. C.
    Veltman, Jeroen
    Duvivier, Katya M.
    Lobbes, Marc B. I.
    Pijnappel, Ruud M.
    Karssemeijer, Nico
    de Koning, Harry J.
    van den Bosch, Maurice A. A. J.
    Monninkhof, Evelyn M.
    Mali, Willem P. Th M.
    Veldhuis, Wouter B.
    van Gils, Carla H.
    [J]. RADIOLOGY, 2015, 277 (02) : 527 - 537
  • [10] Breast MRI Background Parenchymal Enhancement Categorization Using Deep Learning: Outperforming the Radiologist
    Eskreis-Winkler, Sarah
    Sutton, Elizabeth J.
    D'Alessio, Donna
    Gallagher, Katherine
    Saphier, Nicole
    Stember, Joseph
    Martinez, Danny F.
    Morris, Elizabeth A.
    Pinker, Katja
    [J]. JOURNAL OF MAGNETIC RESONANCE IMAGING, 2022, 56 (04) : 1068 - 1076