Towards a Stacking Ensemble Model for Predicting Diabetes Mellitus using Combination of Machine Learning Techniques

被引:0
作者
Alzubaidi, Abdulaziz A. [1 ]
Halawani, Sami M. [1 ]
Jarrah, Mutasem [1 ]
机构
[1] King Abdulaziz Univ, Fac Comp & Informat Technol, Jeddah, Saudi Arabia
关键词
DM; Diabetes Mellitus; Stacking; Ensemble learning; Machine Learning; Random Forest (RF); Logistic Regression (LR); Extreme Gradient Boosting model (XGBoost);
D O I
10.14569/IJACSA.2023.0141236
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
-Diabetes Mellitus (DM) is a chronic disease affecting the world's population, it causes long-term issues such kidney failure, blindness, and heart disease, hurting one's quality of life. Diagnosing diabetes mellitus in an early stage is a challenge and a decisive decision for medical experts, as delay in diagnosis leads to complications in controlling the progression of the disease. Therefore, this research aims to develop a novel stacking ensemble model to predict diabetes mellitus a combination of machine learning models, where an ensemble of Prediction classifiers was used, such as Random Forest (RF), Logistic Regression (LR), as base learners' models, and the Extreme gradient Boosting model (XGBoost) as a Meta -Learner model. The results indicated that our proposed stacking model can predict diabetes mellitus with 83% accuracy on Pima dataset and 97% with DPD dataset. In conclusion, our proposed model can be used to build a diagnostic application for diabetes mellitus, as recommend testing our model on a huge and diverse dataset to obtain more accurate results.
引用
收藏
页码:348 / 358
页数:11
相关论文
共 36 条
[21]  
Kuncheva LI, 2014, COMBINING PATTERN CLASSIFIERS: METHODS AND ALGORITHMS, 2ND EDITION, P1
[22]   An Ensemble Approach to Predict Early-Stage Diabetes Risk Using Machine Learning: An Empirical Study [J].
Laila, Umm e ;
Mahboob, Khalid ;
Khan, Abdul Wahid ;
Khan, Faheem ;
Taekeun, Whangbo .
SENSORS, 2022, 22 (14)
[23]   Deep learning [J].
LeCun, Yann ;
Bengio, Yoshua ;
Hinton, Geoffrey .
NATURE, 2015, 521 (7553) :436-444
[24]  
Maalouf Maher, 2011, International Journal of Data Analysis Techniques and Strategies, V3, P281, DOI 10.1504/IJDATS.2011.041335
[25]  
Patil RN., 2023, Int J Electr Comput Eng, V13, P1015, DOI [10.11591/ijece.v13i1.pp1015-1023, DOI 10.11591/IJECE.V13I1.PP1015-1023]
[26]  
Pedregosa F, 2011, J MACH LEARN RES, V12, P2825
[27]  
Qin L., 2022, P 2022 5 INT C ART I, DOI 10.1145/3573942.3573949
[28]   Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition [J].
Saeedi, Pouya ;
Petersohn, Inga ;
Salpea, Paraskevi ;
Malanda, Belma ;
Karuranga, Suvi ;
Unwin, Nigel ;
Colagiuri, Stephen ;
Guariguata, Leonor ;
Motala, Ayesha A. ;
Ogurtsova, Katherine ;
Shaw, Jonathan E. ;
Bright, Dominic ;
Williams, Rhys ;
Almutairi, Reem ;
Montoya, Pablo Aschner ;
Basit, Abdul ;
Besancon, Stephane ;
Bommer, Christian ;
Borgnakke, Wenche ;
Boyko, Edward ;
Chan, Juliana ;
Divakar, Hema ;
Esteghamati, Alireza ;
Forouhi, Nita ;
Franco, Laercio ;
Gregg, Edward ;
Hassanein, Mohamed ;
Ke, Calvin ;
Levitt, Dinky ;
Lim, Lee-Ling ;
Ogle, Graham D. ;
Owens, David ;
Pavkov, Meda ;
Pearson-Stuttard, Jonathan ;
Ramachandran, Ambady ;
Rathmann, Wolfgang ;
Riaz, Musarrat ;
Simmons, David ;
Sinclair, Alan ;
Sobngwi, Eugene ;
Thomas, Rebecca ;
Ward, Heather ;
Wild, Sarah ;
Yang, Xilin ;
Yuen, Lili ;
Zhang, Ping .
DIABETES RESEARCH AND CLINICAL PRACTICE, 2019, 157
[29]  
Shahri N. H. N. B. M., 2021, Mathematics and Statistics, P379, DOI [DOI 10.13189/MS.2021.090320, 10.13189/ms.2021.090320]
[30]   eDiaPredict: An Ensemble-based Framework for Diabetes Prediction [J].
Singh, Ashima ;
Dhillon, Arwinder ;
Kumar, Neeraj ;
Hossain, M. Shamim ;
Muhammad, Ghulam ;
Kumar, Manoj .
ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2021, 17 (02)