Phase field modeling of crack propagation in three-dimensional quasi-brittle materials under thermal shock

被引:0
|
作者
Wang, Tao [1 ]
Zhang, Yichen [1 ]
Han, Haoyue [1 ]
Wang, Lei [1 ]
Ye, Xuan [2 ]
Zhuang, Zhuo [3 ]
机构
[1] Beijing Inst Technol, Natl Key Lab Explos Sci & Safety Protect, Beijing, Peoples R China
[2] Tsinghua Univ, Inst Nucl & New Energy Technol, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Sch Aerosp Engn, Appl Mech Lab, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase-field model; Quasi-brittle materials; Thermal shock; Dimension limit; Critical temperature; ELEMENT-METHOD; DAMAGE MODEL; CERAMICS; BEHAVIOR; FAILURE; GROWTH;
D O I
10.1016/j.engfracmech.2024.110070
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Quasi-brittle materials create intricate crack patterns on their surface and internal threedimensional crack networks when exposed to thermal shock conditions. Their cracking behavior is notably impacted by their quenching temperature and size. In this paper, a coupled three-dimensional phase field-cohesive zone model that accounts for thermoelastic fracture is developed to reproduce the quenching and cracking experiments of ceramic balls. The accuracy of the phase field model is demonstrated by simulating the phase field of a single-element cooling process and comparing it with the analytical solution. The quench fracture process of the 3D ceramic ball is then simulated. The phase field simulations show that the surface crack morphology during the quenching process is somewhat random. Still, the crack distribution density is determined by the quenching temperature difference and ceramic ball size. Furthermore, a threshold size is present during the quenching process. When the ceramic ball's radius falls below this threshold, the surface crack pattern no longer appears during quenching. Consequently, the phase-field-cohesive zone model represents an effective means of predicting three-dimensional fracture processes in quasi-brittle materials subjected to thermodynamically coupled loading.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Phase-field modeling for predicting three-dimensional fatigue crack initiation and growth under laser shock peening induced residual stress
    Tang, Wei
    Su, Shaopu
    Sun, Shen
    Liu, Shijie
    Yi, Min
    INTERNATIONAL JOURNAL OF FATIGUE, 2025, 193
  • [32] A Hybrid Finite Volume and Extended Finite Element Method for Hydraulic Fracturing with Cohesive Crack Propagation in Quasi-Brittle Materials
    Liu, Chong
    Shen, Zhenzhong
    Gan, Lei
    Jin, Tian
    Zhang, Hongwei
    Liu, Detan
    MATERIALS, 2018, 11 (10)
  • [33] Crack branching mechanism of rock-like quasi-brittle materials under dynamic stress
    Tang Chun-an
    Yang Yue-feng
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2012, 19 (11) : 3273 - 3284
  • [34] Crack propagation simulation in brittle elastic materials by a phase field method
    Lu, Xingxue
    Li, Cheng
    Tie, Ying
    Hou, Yuliang
    Zhang, Chuanzeng
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2019, 9 (06) : 339 - 352
  • [35] Coupled Thermo-Mechanical Phase-Field Modeling to Simulate the Crack Evolution of Defective Ceramic Materials under Flame Thermal Shock
    Wang, Zai
    Zhang, Shi Yi
    Shen, Qiang
    APPLIED SCIENCES-BASEL, 2023, 13 (23):
  • [36] A novel three dimensional failure criterion for quasi-brittle materials based on multi-scale damage approach
    Ren, Lu
    Lv, Zhao-Min
    Niu, Fu-Jun
    Qin, Zi-Peng
    Zhao, Lun-Yang
    MECHANICS OF MATERIALS, 2024, 198
  • [37] Phase-field modeling of thermal shock fracture in functionally graded materials
    Pang, Yong
    Li, Peidong
    Li, Dingyu
    Zhou, Xiandong
    Fan, Haidong
    Wang, Qingyuan
    ENGINEERING FRACTURE MECHANICS, 2024, 307
  • [38] Mesoscale fracking modelling of heterogeneous quasi-brittle materials using a hydromechanical coupled cohesive phase-field model
    Li, Hui
    Wang, Shanyong
    Li, Shangming
    Yang, Zhenjun
    ENGINEERING FRACTURE MECHANICS, 2025, 317
  • [39] A computational framework of three-dimensional configurational-force-driven brittle crack propagation
    Guerses, Ercan
    Miehe, Christian
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 198 (15-16) : 1413 - 1428
  • [40] A unified phase-field method-based framework for modeling quasi-brittle fracture in composites with interfacial debonding
    Bian, Pei-Liang
    Qing, Hai
    Schmauder, Siegfried
    Yu, Tiantang
    COMPOSITE STRUCTURES, 2024, 327