Violations of Hyperscaling in Finite-Size Scaling above the Upper Critical Dimension

被引:1
作者
Young, A. Peter [1 ]
机构
[1] Univ Calif Santa Cruz, Phys Dept, Santa Cruz, CA 95064 USA
关键词
phase transitions; finite-size scaling; hyperscaling; upper critical dimension; ISING-MODEL;
D O I
10.3390/e26060509
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider how finite-size scaling (FSS) is modified above the upper critical dimension, du=4, due to hyperscaling violations, which in turn arise from a dangerous irrelevant variable. In addition to the commonly studied case of periodic boundary conditions, we also consider new effects that arise with free boundary conditions. Some numerical results are presented in addition to theoretical arguments.
引用
收藏
页数:15
相关论文
共 22 条
[1]   Hyperscaling above the upper critical dimension [J].
Berche, B. ;
Kenna, R. ;
Walter, J. -C. .
NUCLEAR PHYSICS B, 2012, 865 (01) :115-132
[2]  
Berche B., 2022, SciPost Phys. Lect. Notes, V136, P60, DOI DOI 10.21468/SCIPOSTPHYSLECTNOTES.60
[3]   FINITE-SIZE TESTS OF HYPERSCALING [J].
BINDER, K ;
NAUENBERG, M ;
PRIVMAN, V ;
YOUNG, AP .
PHYSICAL REVIEW B, 1985, 31 (03) :1498-1502
[4]   FINITE SIZE SCALING ANALYSIS OF ISING-MODEL BLOCK DISTRIBUTION-FUNCTIONS [J].
BINDER, K .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1981, 43 (02) :119-140
[5]   FINITE SIZE EFFECTS IN PHASE-TRANSITIONS [J].
BREZIN, E ;
ZINNJUSTIN, J .
NUCLEAR PHYSICS B, 1985, 257 (06) :867-893
[6]   Geometric scaling behaviors of the Fortuin-Kasteleyn Ising model in high dimensions [J].
Fang, Sheng ;
Zhou, Zongzheng ;
Deng, Youjin .
PHYSICAL REVIEW E, 2023, 107 (04)
[7]   Complete graph and Gaussian fixed-point asymptotics in the five-dimensional Fortuin-Kasteleyn Ising model with periodic boundaries [J].
Fang, Sheng ;
Grimm, Jens ;
Zhou, Zongzheng ;
Deng, Youjin .
PHYSICAL REVIEW E, 2020, 102 (02)
[8]  
Fisher M.E., 1971, Critical Phenomena, P1
[9]   SCALING THEORY FOR FINITE-SIZE EFFECTS IN CRITICAL REGION [J].
FISHER, ME ;
BARBER, MN .
PHYSICAL REVIEW LETTERS, 1972, 28 (23) :1516-&
[10]   Finite-size scaling of the random-field Ising model above the upper critical dimension [J].
Fytas, Nikolaos G. ;
Martin-Mayor, Victor ;
Parisi, Giorgio ;
Picco, Marco ;
Sourlas, Nicolas .
PHYSICAL REVIEW E, 2023, 108 (04)