data mining;
machine learning (ML);
double deep Q-network (DDQN);
reinforcement learning;
sentiment analysis;
stock forecasting;
TECHNICAL ANALYSIS;
PREDICTION;
HYPOTHESIS;
MACHINE;
D O I:
10.3390/electronics13091629
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Stock market prediction is a subject of great interest within the finance industry and beyond. In this context, our research investigates the use of reinforcement learning through implementing the double deep Q-network (DDQN) alongside technical indicators and sentiment analysis, utilizing data from Yahoo Finance and StockTwits to forecast NVIDIA's short-term stock movements over the dynamic and volatile period from 2 January 2020, to 21 September 2023. By incorporating financial data, the model's effectiveness is assessed in three stages: initial reliance on closing prices, the introduction of technical indicators, and the integration of sentiment analysis. Early findings showed a dominant buy tendency (63.8%) in a basic model. Subsequent phases used technical indicators for balanced decisions and sentiment analysis to refine strategies and moderate rewards. Comparative analysis underscores a progressive increase in profitability, with average profits ranging from 57.41 to 119.98 with full data integration and greater outcome variability. These results reveal the significant impact of combining diverse data sources on the model's predictive accuracy and profitability, suggesting that integrating sentiment analysis alongside traditional financial metrics can significantly enhance the sophistication and effectiveness of algorithmic trading strategies in fluctuating market environments.
机构:
Soonchunhyang Univ, Dept Future Convergence Technol, 22 Soonchunhyang Ro, Asan 31538, Chungcheongnam, South KoreaSoonchunhyang Univ, Dept Future Convergence Technol, 22 Soonchunhyang Ro, Asan 31538, Chungcheongnam, South Korea
Park, Myeongseok
Kim, Jaeyun
论文数: 0引用数: 0
h-index: 0
机构:
Soonchunhyang Univ, Dept AI & Big Data, 22 Soonchunhyang Ro, Asan 31538, Chungcheongnam, South KoreaSoonchunhyang Univ, Dept Future Convergence Technol, 22 Soonchunhyang Ro, Asan 31538, Chungcheongnam, South Korea
机构:
Hong Kong Polytech Univ, Elect & Informat Engn Dept, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Elect & Informat Engn Dept, Hong Kong, Hong Kong, Peoples R China
Tse, Chi K.
Liu, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Elect & Informat Engn Dept, Hong Kong, Hong Kong, Peoples R China
Wuhan Univ, State Key Lab Software Engn, Wuhan, Hebei, Peoples R ChinaHong Kong Polytech Univ, Elect & Informat Engn Dept, Hong Kong, Hong Kong, Peoples R China
Liu, Jing
Lau, Francis C. M.
论文数: 0引用数: 0
h-index: 0
机构:
Hong Kong Polytech Univ, Elect & Informat Engn Dept, Hong Kong, Hong Kong, Peoples R ChinaHong Kong Polytech Univ, Elect & Informat Engn Dept, Hong Kong, Hong Kong, Peoples R China