Automatic Detection of Scalp High-Frequency Oscillations Based on Deep Learning

被引:1
作者
Li, Yutang [1 ,2 ]
Cao, Dezhi [3 ]
Qu, Junda [1 ,2 ]
Wang, Wei [4 ]
Xu, Xinhui [3 ]
Kong, Lingyu [3 ]
Liao, Jianxiang
Hu, Wenhan [4 ]
Zhang, Kai [4 ]
Wang, Jihan [1 ,2 ,3 ]
Li, Chunlin [1 ,2 ]
Yang, Xiaofeng [5 ]
Zhang, Xu [1 ,2 ]
机构
[1] Capital Med Univ, Sch Biomed Engn, Beijing Key Lab Fundamental Res Biomech Clin Appli, Beijing 100069, Peoples R China
[2] Capital Med Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing 100069, Peoples R China
[3] Shenzhen Childrens Hosp, Dept Neurol, Shenzhen 518026, Peoples R China
[4] Capital Med Univ, Beijing Tiantan Hosp, Dept Neurol, Beijing 100070, Peoples R China
[5] Guangzhou Lab, Guangzhou 510700, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; epilepsy; scalp electroencephalography; scalp high-frequency oscillations; TEMPORAL-LOBE; SEIZURE ONSET; EEG; HZ; DISCHARGES; RIPPLES;
D O I
10.1109/TNSRE.2024.3389010
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Scalp high-frequency oscillations (sHFOs) are a promising non-invasive biomarker of epilepsy. However, the visual marking of sHFOs is a time-consuming and subjective process, existing automatic detectors based on single-dimensional analysis have difficulty with accurately eliminating artifacts and thus do not provide sufficient reliability to meet clinical needs. Therefore, we propose a high-performance sHFOs detector based on a deep learning algorithm. An initial detection module was designed to extract candidate high-frequency oscillations. Then, one-dimensional (1D) and two-dimensional (2D) deep learning models were designed, respectively. Finally, the weighted voting method is used to combine the outputs of the two model. In experiments, the precision, recall, specificity and F1-score were 83.44%, 83.60%, 96.61% and 83.42%, respectively, on average and the kappa coefficient was 80.02%. In addition, the proposed detector showed a stable performance on multi-centre datasets. Our sHFOs detector demonstrated high robustness and generalisation ability, which indicates its potential applicability as a clinical assistance tool. The proposed sHFOs detector achieves an accurate and robust method via deep learning algorithm.
引用
收藏
页码:1627 / 1636
页数:10
相关论文
共 55 条
[1]   Interictal scalp fast oscillations as a marker of the seizure onset zone [J].
Andrade-Valenca, L. P. ;
Dubeau, F. ;
Mari, F. ;
Zelmann, R. ;
Gotman, J. .
NEUROLOGY, 2011, 77 (06) :524-531
[2]  
Ba J, 2014, ACS SYM SER
[3]   Pitfalls of high-pass filtering for detecting epileptic oscillations: A technical note on "false" ripples [J].
Benar, C. G. ;
Chauviere, L. ;
Bartolomei, F. ;
Wendling, F. .
CLINICAL NEUROPHYSIOLOGY, 2010, 121 (03) :301-310
[4]   Visual and semi-automatic non-invasive detection of interictal fast ripples: A potential biomarker of epilepsy in children with tuberous sclerosis complex [J].
Bernardo, Danilo ;
Nariai, Hiroki ;
Hussain, Shaun A. ;
Sankar, Raman ;
Salamon, Noriko ;
Krueger, Darcy A. ;
Sahin, Mustafa ;
Northrup, Hope ;
Bebin, E. Martina ;
Wu, Joyce Y. .
CLINICAL NEUROPHYSIOLOGY, 2018, 129 (07) :1458-1466
[5]   Data mining neocortical high-frequency oscillations in epilepsy and controls [J].
Blanco, Justin A. ;
Stead, Matt ;
Krieger, Abba ;
Stacey, William ;
Maus, Douglas ;
Marsh, Eric ;
Viventi, Jonathan ;
Lee, Kendall H. ;
Marsh, Richard ;
Litt, Brian ;
Worrell, Gregory A. .
BRAIN, 2011, 134 :2948-2959
[6]   Noninvasive high-frequency oscillations riding spikes delineates epileptogenic sources [J].
Cai, Zhengxiang ;
Sohrabpour, Abbas ;
Jiang, Haiteng ;
Ye, Shuai ;
Joseph, Boney ;
Brinkmann, Benjamin H. ;
Worrell, Gregory A. ;
He, Bin .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (17)
[7]   A Simple Statistical Method for the Automatic Detection of Ripples in Human Intracranial EEG [J].
Charupanit, K. ;
Lopour, B. A. .
BRAIN TOPOGRAPHY, 2017, 30 (06) :724-738
[8]  
Châtillon CÉ, 2011, CLIN NEUROPHYSIOL, V122, P1701, DOI [10.1016/j.clinph.2011.06.006, 10.1016/j.clinph.2011.02.022]
[9]   A semi-automated method for rapid detection of ripple events on interictal voltage discharges in the scalp electroencephalogram [J].
Chu, Catherine J. ;
Chan, Arthur ;
Song, Dan ;
Staley, Kevin J. ;
Stufflebeam, Steven M. ;
Kramer, Mark A. .
JOURNAL OF NEUROSCIENCE METHODS, 2017, 277 :46-55
[10]   Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy [J].
Crepon, Benoit ;
Navarro, Vincent ;
Hasboun, Dominique ;
Clemenceau, Stephane ;
Martinerie, Jacques ;
Baulac, Michel ;
Adam, Claude ;
Le Van Quyen, Michel .
BRAIN, 2010, 133 :33-45