Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network

被引:1
作者
Sun-Mack, Sunny [1 ]
Minnis, Patrick [1 ]
Chen, Yan [1 ]
Hong, Gang [1 ]
Smith Jr, William L. [2 ]
机构
[1] Analyt Mech Associates Inc, Hampton, VA 23666 USA
[2] NASA, Langley Res Ctr, Hampton, VA 23681 USA
关键词
RADIATIVE-TRANSFER; RETRIEVALS; MODEL; METHODOLOGY; ALGORITHM; AVHRR; CERES;
D O I
10.5194/amt-17-3323-2024
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
An artificial neural network (ANN) algorithm, employing several Aqua MODerate-resolution Imaging Spectroradiometer (MODIS) channels, the retrieved cloud phase and total cloud visible optical depth, and temperature and humidity vertical profiles is trained to detect multilayer (ML) ice-over-water cloud systems identified by matched 2008 CloudSat and CALIPSO (CC) data. The trained multilayer cloud-detection ANN (MCANN) was applied to 2009 MODIS data resulting in combined ML and single layer detection accuracies of 87 % (89 %) and 86 % (89 %) for snow-free (snow-covered) regions during the day and night, respectively. Overall, it detects 55 % and similar to 30 % of the CC ML clouds over snow-free and snow-covered surfaces, respectively, and has a relatively low false alarm rate. The net gain in accuracy, which is the difference between the true and false ML fractions, is 7.5 % and similar to 2.0 % over snow-free and snow/ice-covered surfaces. Overall, the MCANN is more accurate than most currently available methods. When corrected for the viewing-zenith-angle dependence of each parameter, the ML fraction detected is relatively invariant across the swath. Compared to the CC ML variability, the MCANN is robust seasonally and interannually and produces similar distribution patterns over the globe, except in the polar regions. Additional research is needed to conclusively evaluate the viewing zenith angle (VZA) dependence and further improve the MCANN accuracy. This approach should greatly improve the monitoring of cloud vertical structure using operational passive sensors.
引用
收藏
页码:3323 / 3346
页数:24
相关论文
共 71 条
  • [51] Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part I: Cloud Fraction and Properties
    Stanfield, Ryan E.
    Dong, Xiquan
    Xi, Baike
    Kennedy, Aaron
    Del Genio, Anthony D.
    Minnis, Patrick
    Jiang, Jonathan H.
    [J]. JOURNAL OF CLIMATE, 2014, 27 (11) : 4189 - 4208
  • [52] Cloud_cci Advanced Very High Resolution Radiometer post meridiem (AVHRR-PM) dataset version 3: 35-year climatology of global cloud and radiation properties
    Stengel, Martin
    Stapelberg, Stefan
    Sus, Oliver
    Finkensieper, Stephan
    Wuerzler, Benjamin
    Philipp, Daniel
    Hollmann, Rainer
    Poulsen, Caroline
    Christensen, Matthew
    McGarragh, Gregory
    [J]. EARTH SYSTEM SCIENCE DATA, 2020, 12 (01) : 41 - 60
  • [53] CloudSat mission: Performance and early science after the first year of operation
    Stephens, Graeme L.
    Vane, Deborah G.
    Tanelli, Simone
    Im, Eastwood
    Durden, Stephen
    Rokey, Mark
    Reinke, Don
    Partain, Philip
    Mace, Gerald G.
    Austin, Richard
    L'Ecuyer, Tristan
    Haynes, John
    Lebsock, Matthew
    Suzuki, Kentaroh
    Waliser, Duane
    Wu, Dong
    Kay, Jen
    Gettelman, Andrew
    Wang, Zhien
    Marchand, Rojer
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2008, 113 (D23)
  • [54] Cirrus cloud retrieval with MSG/SEVIRI using artificial neural networks
    Strandgren, Johan
    Bugliaro, Luca
    Sehnke, Frank
    Schroeder, Leon
    [J]. ATMOSPHERIC MEASUREMENT TECHNIQUES, 2017, 10 (09) : 3547 - 3573
  • [55] ESA'S SPACE-BASED DOPPLER WIND LIDAR MISSION AEOLUS - FIRST WIND AND AEROSOL PRODUCT ASSESSMENT RESULTS
    Straume, A. G.
    Rennie, M.
    Isaksen, L.
    de Kloe, J.
    Marseille, G-J
    Stoffelen, A.
    Flament, T.
    Stieglitz, H.
    Dabas, A.
    Huber, D.
    Reitebuch, O.
    Lemmerz, C.
    Lux, O.
    Marksteiner, U.
    Weiler, F.
    Witschas, B.
    Meringer, M.
    Schmidt, K.
    Nikolaus, I
    Geiss, A.
    Flamant, P.
    Kanitz, T.
    Wernham, D.
    von Bismarck, J.
    Bley, S.
    Fehr, T.
    Floberghagen, R.
    Parinello, T.
    [J]. 29TH INTERNATIONAL LASER RADAR CONFERENCE (ILRC 29), 2020, 237
  • [56] Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel
    Stubenrauch, C. J.
    Rossow, W. B.
    Kinne, S.
    Ackerman, S.
    Cesana, G.
    Chepfer, H.
    Di Girolamo, L.
    Getzewich, B.
    Guignard, A.
    Heidinger, A.
    Maddux, B. C.
    Menzel, W. P.
    Minnis, P.
    Pearl, C.
    Platnick, S.
    Poulsen, C.
    Riedi, J.
    Sun-Mack, S.
    Walther, A.
    Winker, D.
    Zeng, S.
    Zhao, G.
    [J]. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2013, 94 (07) : 1031 - 1049
  • [57] Sun-Mack S., Multi-layer cloud-detection artificial neural network output data
  • [58] Detection of Single and Multilayer Clouds in an Artificial Neural Network Approach
    Sun-Mack, Sunny
    Minnis, Patrick
    Smith, William L., Jr.
    Hong, Gang
    Chen, Yan
    [J]. REMOTE SENSING OF CLOUDS AND THE ATMOSPHERE XXII, 2017, 10424
  • [59] Detecting Multilayer Clouds From the Geostationary Advanced Himawari Imager Using Machine Learning Techniques
    Tan, Zhonghui
    Liu, Chao
    Ma, Shuo
    Wang, Xin
    Shang, Jian
    Wang, Jianjie
    Ai, Weihua
    Yan, Wei
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [60] Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking
    Taravat, Alireza
    Proud, Simon
    Peronaci, Simone
    Del Frate, Fabio
    Oppelt, Natascha
    [J]. REMOTE SENSING, 2015, 7 (02): : 1529 - 1539