The Gehring-Hayman type theorem on pseudoconvex domains of finite type in C2

被引:0
|
作者
Li, Haichou [1 ]
Pu, Xingsi [2 ]
Wang, Hongyu [3 ,4 ]
机构
[1] South China Agr Univ, Coll Math & Informat, Guangzhou 510640, Peoples R China
[2] Chongqing Univ Technol, Math Sci Res Ctr, Chongqing 400054, Peoples R China
[3] Beijing Univ Posts & Telecommun, Sch Sci, Beijing 100876, Peoples R China
[4] Beijing Univ Posts & Telecommun, Key Lab Math & Informat Networks, Minist Educ, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-geodesic; Kobayashi distance; pseudoconvex domain; Gromov hyperbolicity; METRICS;
D O I
10.1007/s10231-024-01466-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we obtain the Gehring-Hayman type theorem on smoothly bounded pseudo-convex domains of finite type in C-2. As an application, we provide a quantitative comparison between global and local Kobayashi distances near a boundary point for these domains.
引用
收藏
页码:2785 / 2799
页数:15
相关论文
共 50 条
  • [1] A Gehring-Hayman Inequality for Strongly Pseudoconvex Domains
    Kosinski, Lukasz
    Nikolov, Nikolai
    Thomas, Pascal J.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2024, 2024 (11) : 9165 - 9177
  • [2] Gehring-Hayman Theorem for conformal deformations
    Koskela, Pekka
    Lammi, Paivi
    COMMENTARII MATHEMATICI HELVETICI, 2013, 88 (01) : 185 - 203
  • [3] Some remarks on the Gehring-Hayman theorem
    Rogovin, Sari
    Shibahara, Hyogo
    Zhou, Qingshan
    ANNALES FENNICI MATHEMATICI, 2023, 48 (01): : 141 - 152
  • [4] Hankel operators on pseudoconvex domains of finite type in C2
    Symesak, F
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1998, 50 (03): : 658 - 672
  • [5] Gromov hyperbolicity of pseudoconvex finite type domains in C2
    Fiacchi, Matteo
    MATHEMATISCHE ANNALEN, 2022, 382 (1-2) : 37 - 68
  • [6] The Kobayashi Metric and Gromov Hyperbolicity on Pseudoconvex Domains of Finite Type in C2
    Li, Haichou
    Pu, Xingsi
    Wang, Lang
    JOURNAL OF GEOMETRIC ANALYSIS, 2024, 34 (01)
  • [7] Stability of holder estimates for partial derivative on pseudoconvex domains of finite type in C2
    Cho, S
    Ahn, H
    Kim, S
    NAGOYA MATHEMATICAL JOURNAL, 1997, 148 : 23 - 38
  • [8] An alexandrov type theorem for reinhardt domains of C2
    Hounie, J.
    Lanconelli, E.
    RECENT PROGRESS ON SOME PROBLEMS IN SEVERAL COMPLEX VARIABLES AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 400 : 129 - +
  • [9] Bi-Holder Extensions of Quasi-isometries on Pseudoconvex Domains of Finite Type in C2
    Liu, Jinsong
    Pu, Xingsi
    Wang, Hongyu
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (05)
  • [10] C2 DOMAINS, PSEUDOCONVEX DOMAINS AND FINITE DOMAINS WITH A NONCOMPACT GROUP OF AUTOMORPHISMS
    BERTELOOT, F
    COEURE, G
    ANNALES DE L INSTITUT FOURIER, 1991, 41 (01) : 77 - 86