Synthesizing 3D Multi-Contrast Brain Tumor MRIs Using Tumor Mask Conditioning

被引:0
作者
Truong, Nghi C. D. [1 ]
Yogananda, Chandan Ganesh Bangalore [1 ]
Wagner, Benjamin C. [1 ]
Holcomb, James M. [1 ]
Reddy, Divya [1 ]
Saadat, Niloufar [1 ]
Hatanpaa, Kimmo J. [2 ]
Patel, Toral R. [3 ]
Fei, Baowei [1 ,4 ]
Lee, Matthew D. [5 ]
Jain, Rajan [5 ,6 ]
Bruce, Richard J. [7 ]
Pinho, Marco C. [1 ]
Madhuranthakam, Ananth J. [1 ]
Maldjian, Joseph A. [1 ]
机构
[1] UT Southwestern Med Ctr, Dept Radiol, Dallas, TX 75390 USA
[2] UT Southwestern Med Ctr, Dept Pathol, Dallas, TX USA
[3] UT Southwestern Med Ctr, Dept Neurol Surg, Dallas, TX USA
[4] Univ Texas Dallas, Dept Bioengn, Richardson, TX USA
[5] NYU Grossman Sch Med, Dept Radiol, New York, NY USA
[6] NYU Grossman Sch Med, Dept Neurosurg, New York, NY USA
[7] Univ Wisconsin Madison, Dept Radiol, Madison, WI USA
来源
IMAGING INFORMATICS FOR HEALTHCARE, RESEARCH, AND APPLICATIONS, MEDICAL IMAGING 2024 | 2024年 / 12931卷
关键词
Latent diffusion model; Generative models; Brain tumor imaging; Synthetic data;
D O I
10.1117/12.3009331
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Data scarcity and data imbalance are two major challenges in training deep learning models on medical images, such as brain tumor MRI data. The recent advancements in generative artificial intelligence have opened new possibilities for synthetically generating MRI data, including brain tumor MRI scans. This approach can be a potential solution to mitigate the data scarcity problem and enhance training data availability. This work focused on adapting the 2D latent diffusion models to generate 3D multi-contrast brain tumor MRI data with a tumor mask as the condition. The framework comprises two components: a 3D autoencoder model for perceptual compression and a conditional 3D Diffusion Probabilistic Model (DPM) for generating high-quality and diverse multi-contrast brain tumor MRI samples, guided by a conditional tumor mask. Unlike existing works that focused on generating either 2D multi-contrast or 3D single-contrast MRI samples, our models generate multi-contrast 3D MRI samples. We also integrated a conditional module within the UNet backbone of the DPM to capture the semantic class-dependent data distribution driven by the provided tumor mask to generate MRI brain tumor samples based on a specific brain tumor mask. We trained our models using two brain tumor datasets: The Cancer Genome Atlas (TCGA) public dataset and an internal dataset from the University of Texas Southwestern Medical Center (UTSW). The models were able to generate high-quality 3D multi-contrast brain tumor MRI samples with the tumor location aligned by the input condition mask. The quality of the generated images was evaluated using the Fr ' echet Inception Distance (FID) score. This work has the potential to mitigate the scarcity of brain tumor data and improve the performance of deep learning models involving brain tumor MRI data.
引用
收藏
页数:5
相关论文
共 13 条
  • [1] Image2StyleGAN: How to Embed Images Into the StyleGAN Latent Space?
    Abdal, Rameen
    Qin, Yipeng
    Wonka, Peter
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 4431 - 4440
  • [2] Molecular Profiling Reveals Biologically Discrete Subsets and Pathways of Progression in Diffuse Glioma
    Ceccarelli, Michele
    Barthel, Floris P.
    Malta, Tathiane M.
    Sabedot, Thais S.
    Salama, Sofie R.
    Murray, Bradley A.
    Morozova, Olena
    Newton, Yulia
    Radenbaugh, Amie
    Pagnotta, Stefano M.
    Anjum, Samreen
    Wang, Jiguang
    Manyam, Ganiraju
    Zoppoli, Pietro
    Ling, Shiyun
    Rao, Arjun A.
    Grifford, Mia
    Cherniack, Andrew D.
    Zhang, Hailei
    Poisson, Laila
    Carlotti, Carlos Gilberto, Jr.
    Tirapelli, Daniela Pretti da Cunha
    Rao, Arvind
    Mikkelsen, Tom
    Lau, Ching C.
    Yung, W. K. Alfred
    Rabadan, Raul
    Huse, Jason
    Brat, Daniel J.
    Lehman, Norman L.
    Barnholtz-Sloan, Jill S.
    Zheng, Siyuan
    Hess, Kenneth
    Rao, Ganesh
    Meyerson, Matthew
    Beroukhim, Rameen
    Cooper, Lee
    Akbani, Rehan
    Wrensch, Margaret
    Haussler, David
    Aldape, Kenneth D.
    Laird, Peter W.
    Gutmann, David H.
    Noushmehr, Houtan
    Iavarone, Antonio
    Verhaak, Roel G. W.
    [J]. CELL, 2016, 164 (03) : 550 - 563
  • [3] The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository
    Clark, Kenneth
    Vendt, Bruce
    Smith, Kirk
    Freymann, John
    Kirby, Justin
    Koppel, Paul
    Moore, Stephen
    Phillips, Stanley
    Maffitt, David
    Pringle, Michael
    Tarbox, Lawrence
    Prior, Fred
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) : 1045 - 1057
  • [4] Dhariwal P, 2021, ADV NEUR IN, V34
  • [5] Ho J., 2020, Advances in Neural Information Processing Systems, V33, P6840, DOI [DOI 10.48550/ARXIV.2006.11239, 10.48550/arXiv.2006.11239]
  • [6] Denoising diffusion probabilistic models for 3D medical image generation
    Khader, Firas
    Mueller-Franzes, Gustav
    Arasteh, Soroosh Tayebi
    Han, Tianyu
    Haarburger, Christoph
    Schulze-Hagen, Maximilian
    Schad, Philipp
    Engelhardt, Sandy
    Baessler, Bettina
    Foersch, Sebastian
    Stegmaier, Johannes
    Kuhl, Christiane
    Nebelung, Sven
    Kather, Jakob Nikolas
    Truhn, Daniel
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01):
  • [7] Na Y., 2023, Medical Imaging with Deep Learning
  • [8] Nichol A, 2021, PR MACH LEARN RES, V139
  • [9] The federated tumor segmentation (FeTS) tool: an open-source solution to further solid tumor research
    Pati, Sarthak
    Baid, Ujjwal
    Edwards, Brandon
    Sheller, Micah J.
    Foley, Patrick
    Reina, G. Anthony
    Thakur, Siddhesh
    Sako, Chiharu
    Bilello, Michel
    Davatzikos, Christos
    Martin, Jason
    Shah, Prashant
    Menze, Bjoern
    Bakas, Spyridon
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2022, 67 (20)
  • [10] Peng W., 2023, Generating Realistic Brain MRIs via a Conditional Diffusion Probabilistic Model