Mo-Si Alloys Studied by Atomistic Computer Simulations Using a Novel Machine-Learning Interatomic Potential: Thermodynamics and Interface Phenomena

被引:0
作者
Lenchuk, Olena [1 ]
Rohrer, Jochen [1 ]
Albe, Karsten [1 ]
机构
[1] Tech Univ Darmstadt, Inst Mat Sci, Otto Berndt Str 3, D-64287 Darmstadt, Germany
关键词
machine-learning interatomic potentials; molecular dynamics; Mo-Si alloys; refractory alloys; STANDARD MOLAR ENTHALPY; COMBUSTION CALORIMETRIC DETERMINATION; MOLYBDENUM DISILICIDE; MECHANICAL-PROPERTIES; ELASTIC-CONSTANTS; THERMAL-EXPANSION; TEMPERATURE; SILICIDES; MO3SI; FLUORINE;
D O I
10.1002/adem.202302043
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A machine-learning interatomic potential for Mo-Si alloys based on the atomic cluster expansion formalism is presented, its performance is validated, and it is applied for studying interface phenomena. Structural parameters, elastic constants, and melting temperatures of the crystalline body-centered cubic Mo, diamond Si, and stable Mo-Si alloys (Mo3Si, Mo5Si3, and MoSi2) are calculated and compared to experimental values. Using the trained potential defect, formation energies are calculated and the thermodynamic stability of various MoxSiy alloys is discussed with focus on Mo3Si. Finally, the intermixing between Mo and Si phases is studied by performing interface simulations of Mo|Si. The crystallization behavior of the Mo3Si phase provides additional evidence for the off-stoichiometric composition of this intermetallic phase. A novel machine-learning interatomic potential for Mo-Si alloys is used to investigate the crystallization behavior of the Mo3Si phase and provides evidence for the off-stoichiometric composition of this intermetallic phase.image (c) 2024 WILEY-VCH GmbH
引用
收藏
页数:12
相关论文
共 81 条
[1]   Boron-doped molybdenum silicides for structural applications [J].
Akinc, M ;
Meyer, MK ;
Kramer, MJ ;
Thom, AJ ;
Huebsch, JJ ;
Cook, B .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 261 (1-2) :16-23
[2]   Efficient and accurate machine-learning interpolation of atomic energies in compositions with many species [J].
Artrith, Nongnuch ;
Urban, Alexander ;
Ceder, Gerbrand .
PHYSICAL REVIEW B, 2017, 96 (01)
[3]   Effect of Ti addition on the thermal expansion anisotropy of Mo5Si3 [J].
Azim, M. A. ;
Christ, H. -J. ;
Gorr, B. ;
Kowald, T. ;
Lenchuk, O. ;
Albe, K. ;
Heilmaier, M. .
ACTA MATERIALIA, 2017, 132 :25-34
[4]   Machine Learning a General-Purpose Interatomic Potential for Silicon [J].
Bartok, Albert P. ;
Kermode, James ;
Bernstein, Noam ;
Csanyi, Gabor .
PHYSICAL REVIEW X, 2018, 8 (04)
[5]   Gaussian Approximation Potentials: The Accuracy of Quantum Mechanics, without the Electrons [J].
Bartok, Albert P. ;
Payne, Mike C. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW LETTERS, 2010, 104 (13)
[6]   Atomistic potentials for the molybdenum-silicon system [J].
Baskes, MI .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1999, 261 (1-2) :165-168
[7]   FINITE ELASTIC STRAIN OF CUBIC CRYSTALS [J].
BIRCH, F .
PHYSICAL REVIEW, 1947, 71 (11) :809-824
[8]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[9]   Projector augmented wave method:: ab initio molecular dynamics with full wave functions [J].
Blöchl, PE ;
Först, CJ ;
Schimpl, J .
BULLETIN OF MATERIALS SCIENCE, 2003, 26 (01) :33-41
[10]   Efficient parametrization of the atomic cluster expansion [J].
Bochkarev, Anton ;
Lysogorskiy, Yury ;
Menon, Sarath ;
Qamar, Minaam ;
Mrovec, Matous ;
Drautz, Ralf .
PHYSICAL REVIEW MATERIALS, 2022, 6 (01)