Clinical implementation and evaluation of deep learning-assisted automatic radiotherapy treatment planning for lung cancer

被引:1
作者
Wang, Ningyu [1 ]
Fan, Jiawei [2 ,3 ,4 ,5 ]
Xu, Yingjie [1 ]
Yan, Lingling [1 ]
Chen, Deqi [1 ]
Wang, Wenqing [1 ]
Men, Kuo [1 ]
Dai, Jianrong [1 ]
Liu, Zhiqiang [1 ]
机构
[1] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Natl Canc Ctr, Natl Clin Res Ctr Canc, Beijing 100021, Peoples R China
[2] Fudan Univ, Shanghai Canc Ctr, Dept Radiat Oncol, Shanghai 200032, Peoples R China
[3] Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai 200032, Peoples R China
[4] Shanghai Clin Res Ctr Radiat Oncol, Shanghai, Peoples R China
[5] Shanghai Key Lab Radiat Oncol, Shanghai 200032, Peoples R China
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2024年 / 124卷
基金
中国国家自然科学基金;
关键词
Automatic planning; Deep learning; VMAT; Expert review; Lung cancer; MODULATED RADIATION-THERAPY; DOSE PREDICTION; QUALITY;
D O I
10.1016/j.ejmp.2024.104492
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: The purpose of the study is to investigate the clinical application of deep learning (DL)-assisted automatic radiotherapy planning for lung cancer. Methods: A DL model was developed for predicting patient-specific doses, trained and validated on a dataset of 235 patients with diverse target volumes and prescriptions. The model was integrated into clinical workflow with DL-predicted objective functions. The automatic plans were retrospectively designed for additional 50 treated manual volumetric modulated arc therapy (VMAT) plans. A comparison was made between automatic and manual plans in terms of dosimetric indexes, monitor units (MUs) and planning time. Plan quality metric (PQM) encompassing these indexes was evaluated, with higher PQM values indicating superior plan quality. Qualitative evaluations of two plans were conducted by four reviewers. Results: The PQM score was 40.7 f 13.1 for manual plans and 40.8 f 13.5 for automatic plans (P = 0.75). Compared to manual plans, the targets coverage and homogeneity of automatic plans demonstrated no significant difference. Manual plans exhibited better sparing for lung in V5 (difference: 1.8 f 4.2 %, P = 0.02), whereas automatic plans showed enhanced sparing for heart in V30 (difference: 1.4 f 4.7 %, P = 0.02) and for spinal cord in Dmax (difference: 0.7 f 4.7 Gy, P = 0.04). The planning time and MUs of automatic plans were significantly reduced by 70.5 f 20.0 min and 97.4 f 82.1. Automatic plans were deemed acceptable in 88 % of the reviews (176/200). Conclusions: The DL-assisted approach for lung cancer notably decreased planning time and MUs, while demonstrating comparable or superior quality relative to manual plans. It has the potential to provide benefit to lung cancer patients.
引用
收藏
页数:9
相关论文
共 50 条
[41]   Development and clinical introduction of automated radiotherapy treatment planning for prostate cancer [J].
Winkel, D. ;
Bol, G. H. ;
van Asselen, B. ;
Hes, J. ;
Scholten, V. ;
Kerkmeijer, L. G. W. ;
Raaymakers, B. W. .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (24) :8587-8595
[42]   Delineation variation of lymph node stations for treatment planning in lung cancer radiotherapy [J].
Kepka, Lucyna ;
Bujko, Krzysztof ;
Garmol, Dariusz ;
Palucki, Jakub ;
Zolciak-Siwinska, Agnieszka ;
Guzel-Szczepiorkowska, Zuzanna ;
Pietrzak, Lucyna ;
Komosinska, Katarzyna ;
Sprawka, Arkadiusz ;
Garbaczewska, Anna .
RADIOTHERAPY AND ONCOLOGY, 2007, 85 (03) :450-455
[43]   Assessment of clinical feasibility:offline adaptive radiotherapy for lung cancer utilizing kV iCBCT and UNet plus plus based deep learning model [J].
Zeng, Hongwei ;
Chen, Qi ;
Xiangyu, E. ;
Feng, Yue ;
Lv, Minghe ;
Zeng, Su ;
Shen, Wenhao ;
Guan, Wenhui ;
Zhang, Yang ;
Zhao, Ruping ;
Wang, Shaobin ;
Yu, Jingping .
JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2025, 26 (02)
[44]   Performance evaluation of deep learning techniques for lung cancer prediction [J].
Deepapriya, B. S. ;
Kumar, Parasuraman ;
Nandakumar, G. ;
Gnanavel, S. ;
Padmanaban, R. ;
Anbarasan, Anbarasa Kumar ;
Meena, K. .
SOFT COMPUTING, 2023, 27 (13) :9191-9198
[45]   Deep learning auto-segmentation and automated treatment planning for trismus risk reduction in head and neck cancer radiotherapy [J].
Thor, Maria ;
Iyer, Aditi ;
Jiang, Jue ;
Apte, Aditya ;
Veeraraghavan, Harini ;
Allgood, Natasha B. ;
Kouri, Jennifer A. ;
Zhou, Ying ;
LoCastro, Eve ;
Elguindi, Sharif ;
Hong, Linda ;
Hunt, Margie ;
Cervino, Laura ;
Aristophanous, Michalis ;
Zarepisheh, Masoud ;
Deasy, Joseph O. .
PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2021, 19 :96-101
[46]   Geometric and Dosimetric Evaluation of the Automatic Delineation of Organs at Risk (OARs) in Non-Small-Cell Lung Cancer Radiotherapy Based on a Modified DenseNet Deep Learning Network [J].
Zhang, Fuli ;
Wang, Qiusheng ;
Yang, Anning ;
Lu, Na ;
Jiang, Huayong ;
Chen, Diandian ;
Yu, Yanjun ;
Wang, Yadi .
FRONTIERS IN ONCOLOGY, 2022, 12
[47]   Deep learning for autosegmentation for radiotherapy treatment planning: State-of-the-art and novel perspectives [J].
Erdur, Ayhan Can ;
Rusche, Daniel ;
Scholz, Daniel ;
Kiechle, Johannes ;
Fischer, Stefan ;
Llorian-Salvador, Oscar ;
Buchner, Josef A. ;
Nguyen, Mai Q. ;
Etzel, Lucas ;
Weidner, Jonas ;
Metz, Marie-Christin ;
Wiestler, Benedikt ;
Schnabel, Julia ;
Rueckert, Daniel ;
Combs, Stephanie E. ;
Peeken, Jan C. .
STRAHLENTHERAPIE UND ONKOLOGIE, 2025, 201 (03) :236-254
[48]   The Impact of Colleague Peer Review on the Radiotherapy Treatment Planning Process in the Radical Treatment of Lung Cancer [J].
Rooney, K. P. ;
McAleese, J. ;
Crockett, C. ;
Harney, J. ;
Eakin, R. L. ;
Young, V. A. L. ;
Dunn, M. A. ;
Johnston, R. E. ;
Hanna, G. G. .
CLINICAL ONCOLOGY, 2015, 27 (09) :514-518
[49]   Clinical assessment of deep learning-based uncertainty maps in lung cancer segmentation [J].
Maruccio, Federica Carmen ;
Eppinga, Wietse ;
Laves, Max-Heinrich ;
Navarro, Roger Fonolla ;
Salvi, Massimo ;
Molinari, Filippo ;
Papaconstadopoulos, Pavlos .
PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (03)
[50]   Deep Learning-Aided Automatic Contouring of Clinical Target Volumes for Radiotherapy in Breast Cancer After Modified Radical Mastectomy [J].
You, Jinqiang ;
Wang, Qingxin ;
Wang, Ruoxi ;
An, Qin ;
Wang, Jing ;
Yuan, Zhiyong ;
Wang, Jun ;
Chen, Haibin ;
Yan, Ziye ;
Wei, Jun ;
Wang, Wei .
FRONTIERS IN PHYSICS, 2022, 9