Strategy to systematically design and deploy the ITER plasma control system: A system engineering and model-based design approach

被引:9
作者
de Vries, P. C. [1 ]
Cinque, M. [2 ]
De Tommasi, G. [2 ]
Treutterer, W. [3 ]
Humphreys, D. [4 ]
Walker, M. [4 ]
Felici, F. [5 ]
Gomez, I. [3 ]
Zabeo, L. [1 ]
Ravensbergen, T. [1 ]
Pangione, L. [1 ]
Rimini, F. [6 ]
Rosiello, S. [2 ]
Gribov, Y. [1 ]
Dubrov, M. [1 ]
Vu, A. [1 ]
Carvalho, I. [1 ]
Lee, W. R. [1 ]
Tak, T. [1 ]
Zagar, A. [1 ]
Gunion, R. [1 ]
Pitts, R. [1 ]
Mattei, M. [2 ]
Pironti, A. [2 ]
Ariola, M. [2 ]
Pesamosca, F. [3 ]
Kudlacek, O. [3 ]
Raupp, G. [3 ]
Pautasso, G. [3 ]
Nouailletas, R. [7 ]
Moreau, Ph. [7 ]
Weldon, D. [7 ]
机构
[1] ITER Org, Route Vinon Verdon, F-13067 St Paul Les Durance, France
[2] Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy
[3] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[4] Gen Atom, POB 85608, San Diego, CA 92186 USA
[5] Ecole Polytech Fed Lausanne, Swiss Plasma Ctr SPC, CH-1015 Lausanne, Switzerland
[6] Culham Ctr Fus Energy, UKAEA, Abingdon OX14 3DB, England
[7] CEA, IRFM, F-13108 St Paul Les Durance, France
关键词
ITER; Plasma control system; System engineering; Model -based design; SIMULATION; REQUIREMENTS; TOKAMAKS; ACTUATOR; PHYSICS;
D O I
10.1016/j.fusengdes.2024.114464
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The paper details the process of developing the ITER Plasma Control System (PCS), that is, how to design and deploy it systematically, in the most efficient and effective manner. The integrated nature of the ITER PCS, with its multitude of coupled control functions, and its long-term development, calls for a different approach than the design and short-term deployment of individual controllers. It requires, in the first place, a flexible implementation strategy and system architecture that allows system re-configuration and optimization throughout its development. Secondly, a model-based system engineering approach is carried out, for the complete PCS development, i.e. both its design and deployment. It requires clear definitions for both the PCS role and its functionality, as well as definitions of the design and deployment process itself. The design and deployment process is shown to allow tracing the relationships of the many individual design and deployment aspects, such as system requirements, assumed operation use-cases and response models, and eventually verification and functional validation of the system design. The functional validation will make use of a dedicated PCS simulation platform that includes the description of the control function design as well as plant, actuator and sensor models that enable the simulation of these functions. By establishing a clear understanding of the interconnected steps involved in designing, implementing, commissioning, and operating the system, a more systematic approach is achieved. This ensures the completion of a comprehensive design that can be deployed efficiently, hence preventing the loss of precious operational time needed to debug and retune control functions and more importantly avoiding tokamak discharge disruptions.
引用
收藏
页数:27
相关论文
共 87 条
[1]  
Adcock R.D., Guide to the Systems Engineering Body of Knowledge (SEBoK)
[2]  
[Anonymous], About Us
[3]   Control of resistive wall modes in tokamak plasmas [J].
Ariola, M. ;
De Tommasi, G. ;
Pironti, A. ;
Villone, F. .
CONTROL ENGINEERING PRACTICE, 2014, 24 :15-24
[4]  
Ariola M., 2016, Advances in Industrial Control, V2nd, DOI DOI 10.1007/978-3-319-29890-0
[5]  
Beernaert T.F., 2024, Fus. Eng. Des
[6]   Preparation for assembly and commissioning of ITER [J].
Bigot, B. .
NUCLEAR FUSION, 2022, 62 (04)
[7]   Real-time plasma state monitoring and supervisory control on TCV [J].
Blanken, T. C. ;
Felici, F. ;
Galperti, C. ;
Kong, M. ;
Sauter, O. ;
de Baar, M. R. ;
Vu, N. M. T. ;
Meyer, H. ;
Eich, T. ;
Beurskens, M. ;
Coda, S. ;
Hakola, A. ;
Martin, P. ;
Adamek, J. ;
Agostini, M. ;
Aguiam, D. ;
Ahn, J. ;
Aho-Mantila, L. ;
Akers, R. ;
Albanese, R. ;
Aledda, R. ;
Alessi, E. ;
Allan, S. ;
Alves, D. ;
Ambrosino, R. ;
Amicucci, L. ;
Anand, H. ;
Anastassiou, G. ;
Andrebe, Y. ;
Angioni, C. ;
Apruzzese, G. ;
Ariola, M. ;
Arnichand, H. ;
Arter, W. ;
Baciero, A. ;
Barnes, M. ;
Barrera, L. ;
Behn, R. ;
Bencze, A. ;
Bernardo, J. ;
Bernert, M. ;
Bettini, P. ;
Bilkova, P. ;
Bin, W. ;
Birkenmeier, G. ;
Bizarro, J. P. S. ;
Blanchard, P. ;
Blanken, T. ;
Bluteau, M. ;
Bobkov, V .
NUCLEAR FUSION, 2019, 59 (02)
[8]   Control-oriented modeling of the plasma particle density in tokamaks and application to real-time density profile reconstruction [J].
Blanken, T. C. ;
Felici, F. ;
Rapson, C. J. ;
de Baar, M. R. ;
Heemels, W. P. M. H. .
FUSION ENGINEERING AND DESIGN, 2018, 126 :87-103
[9]   ITER ECH&CD Control System: architecture, interfaces and status of development. [J].
Carannante, Giuseppe ;
Cavinato, Mario ;
Cindric, Katarina ;
De Vries, Peter ;
Felici, Federico ;
Ferrari, Martino Giordano ;
Ferro, Giuseppe ;
Henderson, Mark ;
Neto, Andre ;
Preynas, Melanie ;
Reich, Matthias ;
Sartori, Filippo ;
Zabeo, Luca .
21ST JOINT WORKSHOP ON ELECTRON CYCLOTRON EMISSION AND ELECTRON CYCLOTRON RESONANCE HEATING, EC21, 2023, 277
[10]   Requirements management support for the ITER Plasma Control System in view of first plasma operations [J].
Cinque, M. ;
Fucci, F. ;
De Tommasi, G. ;
de Vries, P. C. ;
Gomez, I ;
Sammuli, B. ;
Snipes, J. ;
Treutterer, W. ;
Walker, M. ;
Winterg, A. ;
Zabeo, L. .
FUSION ENGINEERING AND DESIGN, 2019, 146 :447-449