Logical Error Rates of XZZX and Rotated Quantum Surface Codes

被引:6
作者
Forlivesi, Diego [1 ,2 ]
Valentini, Lorenzo [1 ,2 ]
Chiani, Marco [1 ,2 ]
机构
[1] Univ Bologna, Dept Elect Elect & Informat Engn Guglielmo Marconi, I-40136 Bologna, Italy
[2] Univ Bologna, CNIT, WiLab, I-40136 Bologna, Italy
关键词
Codes; Qubit; Error analysis; Decoding; Quantum computing; Generators; Lattices; error correction; quantum networks; quantum channels; quantum information science;
D O I
10.1109/JSAC.2024.3380088
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Surfacecodesareversatilequantumerror-correcting codes known for their planar geometry, making themideal for practical implementations. While the original proposalused PauliXor PauliZoperators in a square structure, thesecodes can be improved by rotating the lattice or incorporating amix of generators in the XZZX variant. However, a comprehen-sive theoretical analysis of the logical error rate for these variantshas been lacking. To address this gap, we present theoreticalformulas based on recent advancements in understanding theweight distribution of stabilizer codes. For example, over anasymmetric channel with asymmetryA= 10and a physicalerror rate p -> 0, we observe that the logical error rateasymptotically approaches pL -> 10p(2 ) for the rotated[[9,1,3]]XZZX code and pL -> 18.3p2for the[[13,1,3]] surfacecode. Additionally, we observe a particular behavior regardingrectangular lattices in the presence of asymmetric channels.Our findings demonstrate that implementing both rotation andXZZX modifications simultaneously can lead to suboptimal performance. Thus, in scenarios involving a rectangular lattice,it is advisable to avoid using both modifications simultaneously
引用
收藏
页码:1808 / 1817
页数:10
相关论文
共 34 条
[1]   Quantum error detection II: Bounds [J].
Ashikhmin, AE ;
Barg, AM ;
Knill, E ;
Litsyn, SN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) :789-800
[2]   Quantum error detection I: Statement of the problem [J].
Ashikhmin, AE ;
Barg, AM ;
Knill, E ;
Litsyn, SN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (03) :778-788
[3]   The XZZX surface code [J].
Ataides, J. Pablo Bonilla ;
Tuckett, David K. ;
Bartlett, Stephen D. ;
Flammia, Steven T. ;
Brown, Benjamin J. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[4]  
Bravyi SB, 1998, Arxiv, DOI [arXiv:quant-ph/9811052, 10.48550/ARXIV.QUANT-PH/9811052, DOI 10.48550/ARXIV.QUANT-PH/9811052]
[5]   Duality of Quantum and Classical Error Correction Codes: Design Principles and Examples [J].
Babar, Zunaira ;
Chandra, Daryus ;
Hung Viet Nguyen ;
Botsinis, Panagiotis ;
Alanis, Dimitrios ;
Ng, Soon Xin ;
Hanzo, Lajos .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2019, 21 (01) :970-1010
[6]  
Bravyi S, 2023, ARXIV
[7]   Efficient algorithms for maximum likelihood decoding in the surface code [J].
Bravyi, Sergey ;
Suchara, Martin ;
Vargo, Alexander .
PHYSICAL REVIEW A, 2014, 90 (03)
[8]   When Entanglement Meets Classical Communications: Quantum Teleportation for the Quantum Internet [J].
Cacciapuoti, Angela Sara ;
Caleffi, Marcello ;
Van Meter, Rodney ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2020, 68 (06) :3808-3833
[9]   Short Codes for Quantum Channels With One Prevalent Pauli Error Type [J].
Chiani, Marco ;
Valentini, Lorenzo .
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, 2020, 1 (02) :480-486
[10]   Piggybacking on quantum streams [J].
Chiani, Marco ;
Conti, Andrea ;
Win, Moe Z. .
PHYSICAL REVIEW A, 2020, 102 (01)