Quantum machine learning on near-term quantum devices: Current state of supervised and unsupervised techniques for real-world applications

被引:9
作者
Gujju, Yaswitha [1 ]
Matsuo, Atsushi [2 ]
Raymond, Rudy [1 ,3 ,4 ]
机构
[1] Univ Tokyo, Dept Comp Sci, 4-6-1,Shirokanedai,Minato ku, Tokyo 1088639, Japan
[2] IBM Quantum, IBM Res Tokyo, 19-21 Nihonbashi Hakozaki cho,Chuo ku, Tokyo 1038510, Japan
[3] JP Morgan Chase & Co, Global Technol & Appl Res, New York, NY USA
[4] Keio Univ, Quantum Comp Ctr, 3-14-1 Hiyoshi,Kohoku ku, Yokohama, Kanagawa 2238522, Japan
关键词
BARREN PLATEAUS; FRAUD DETECTION; ALGORITHMS; OPPORTUNITIES; PERFORMANCE; CHALLENGES; NETWORK;
D O I
10.1103/PhysRevApplied.21.067001
中图分类号
O59 [应用物理学];
学科分类号
摘要
The past decade has witnessed significant advancements in quantum hardware, encompassing improvements in speed, qubit quantity, and quantum volume-a metric defining the maximum size of a quantum circuit effectively implementable on near-term quantum devices. This progress has led to a surge in quantum machine learning (QML) applications on real hardware, aiming to achieve quantum advantage over classical approaches. This survey focuses on selected supervised and unsupervised learning applications executed on quantum hardware, specifically tailored for real -world scenarios. The exploration includes a thorough analysis of current QML implementation limitations on quantum hardware, covering techniques like encoding, ansatz structure, error mitigation, and gradient methods to address these challenges. Furthermore, the survey evaluates the performance of QML implementations in comparison to classical counterparts. In conclusion, we discuss existing bottlenecks related to applying QML on real quantum devices and propose potential solutions to overcome these challenges in the future.
引用
收藏
页数:34
相关论文
共 366 条
[91]   Quantum circuit architecture search for variational quantum algorithms [J].
Du, Yuxuan ;
Huang, Tao ;
You, Shan ;
Hsieh, Min-Hsiu ;
Tao, Dacheng .
NPJ QUANTUM INFORMATION, 2022, 8 (01)
[92]   v Machine learning & artificial intelligence in the quantum domain: a review of recent progress [J].
Dunjko, Vedran ;
Briegel, Hans J. .
REPORTS ON PROGRESS IN PHYSICS, 2018, 81 (07)
[93]  
Dunjko V, 2017, IEEE SYS MAN CYBERN, P282, DOI 10.1109/SMC.2017.8122616
[94]   On Depth, Robustness and Performance Using the Data Re-Uploading Single-Qubit Classifier [J].
Easom-Mccaldin, Philip ;
Bouridane, Ahmed ;
Belatreche, Ammar ;
Jiang, Richard .
IEEE ACCESS, 2021, 9 :65127-65139
[95]   Quantum Computing for Finance: State-of-the-Art and Future Prospects [J].
Egger, Daniel J. ;
Gambella, Claudio ;
Marecek, Jakub ;
McFaddin, Scott ;
Mevissen, Martin ;
Raymond, Rudy ;
Simonetto, Andrea ;
Woerner, Stefan ;
Yndurain, Elena .
IEEE TRANSACTIONS ON QUANTUM ENGINEERING, 2020, 1
[96]   Hybrid Quantum-Classical Algorithms and Quantum Error Mitigation [J].
Endo, Suguru ;
Cai, Zhenyu ;
Benjamin, Simon C. ;
Yuan, Xiao .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2021, 90 (03)
[97]  
Farhi E, 2018, Arxiv, DOI arXiv:1802.06002
[98]   An introduction to ROC analysis [J].
Fawcett, Tom .
PATTERN RECOGNITION LETTERS, 2006, 27 (08) :861-874
[99]  
Fedorov A., 2022, arXiv
[100]  
Feynman R., 2018, Feynman and Computation, DOI DOI 10.1007/BF02650179