Quantum machine learning on near-term quantum devices: Current state of supervised and unsupervised techniques for real-world applications

被引:9
作者
Gujju, Yaswitha [1 ]
Matsuo, Atsushi [2 ]
Raymond, Rudy [1 ,3 ,4 ]
机构
[1] Univ Tokyo, Dept Comp Sci, 4-6-1,Shirokanedai,Minato ku, Tokyo 1088639, Japan
[2] IBM Quantum, IBM Res Tokyo, 19-21 Nihonbashi Hakozaki cho,Chuo ku, Tokyo 1038510, Japan
[3] JP Morgan Chase & Co, Global Technol & Appl Res, New York, NY USA
[4] Keio Univ, Quantum Comp Ctr, 3-14-1 Hiyoshi,Kohoku ku, Yokohama, Kanagawa 2238522, Japan
关键词
BARREN PLATEAUS; FRAUD DETECTION; ALGORITHMS; OPPORTUNITIES; PERFORMANCE; CHALLENGES; NETWORK;
D O I
10.1103/PhysRevApplied.21.067001
中图分类号
O59 [应用物理学];
学科分类号
摘要
The past decade has witnessed significant advancements in quantum hardware, encompassing improvements in speed, qubit quantity, and quantum volume-a metric defining the maximum size of a quantum circuit effectively implementable on near-term quantum devices. This progress has led to a surge in quantum machine learning (QML) applications on real hardware, aiming to achieve quantum advantage over classical approaches. This survey focuses on selected supervised and unsupervised learning applications executed on quantum hardware, specifically tailored for real -world scenarios. The exploration includes a thorough analysis of current QML implementation limitations on quantum hardware, covering techniques like encoding, ansatz structure, error mitigation, and gradient methods to address these challenges. Furthermore, the survey evaluates the performance of QML implementations in comparison to classical counterparts. In conclusion, we discuss existing bottlenecks related to applying QML on real quantum devices and propose potential solutions to overcome these challenges in the future.
引用
收藏
页数:34
相关论文
共 366 条
[1]   Read the fine print [J].
Aaronson, Scott .
NATURE PHYSICS, 2015, 11 (04) :291-293
[2]  
Abbas A., 2006, Adv. Neural Inf. Process. Syst., V36
[3]   The power of quantum neural networks [J].
Abbas, Amira ;
Sutter, David ;
Zoufal, Christa ;
Lucchi, Aurelien ;
Figalli, Alessio ;
Woerner, Stefan .
NATURE COMPUTATIONAL SCIENCE, 2021, 1 (06) :403-409
[4]   On quantum ensembles of quantum classifiers [J].
Abbas, Amira ;
Schuld, Maria ;
Petruccione, Francesco .
QUANTUM MACHINE INTELLIGENCE, 2020, 2 (01)
[5]   COVID-19 detection on IBM quantum computer with classical-quantum transfer learning [J].
Acar, Erdi ;
Yilmaz, Ihsan .
TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2021, 29 (01) :46-61
[6]  
Akter M., 2023, 2023 IEEE INT C SOFT
[7]   Quantum feature maps for graph machine learning on a neutral atom quantum processor [J].
Albrecht, Boris ;
Dalyac, Constantin ;
Leclerc, Lucas ;
Ortiz-Gutierrez, Luis ;
Thabet, Slimane ;
D'Arcangelo, Mauro ;
Cline, Julia R. K. ;
Elfving, Vincent E. ;
Lassabliere, Lucas ;
Silverio, Henrique ;
Ximenez, Bruno ;
Henry, Louis-Paul ;
Signoles, Adrien ;
Henriet, Loic .
PHYSICAL REVIEW A, 2023, 107 (04)
[8]  
Aleksandrowicz G., 2019, Qiskit: An Open-source Framework for Quantum Computing
[9]   Automatic design of quantum feature maps [J].
Altares-Lopez, Sergio ;
Ribeiro, Angela ;
Garcia-Ripoll, Juan Jose .
QUANTUM SCIENCE AND TECHNOLOGY, 2021, 6 (04)
[10]   The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations [J].
Alwall, J. ;
Frederix, R. ;
Frixione, S. ;
Hirschi, V. ;
Maltoni, F. ;
Mattelaer, O. ;
Shao, H. -S. ;
Stelzer, T. ;
Torrielli, P. ;
Zaro, M. .
JOURNAL OF HIGH ENERGY PHYSICS, 2014, (07)