Deep Learning in Neovascular Age-Related Macular Degeneration

被引:2
作者
Borrelli, Enrico [1 ,2 ]
Serafino, Sonia [1 ,2 ]
Ricardi, Federico [1 ,2 ]
Coletto, Andrea [1 ,2 ]
Neri, Giovanni [1 ,2 ]
Olivieri, Chiara [1 ,2 ]
Ulla, Lorena [1 ,2 ]
Foti, Claudio [1 ,2 ]
Marolo, Paola [1 ,2 ]
Toro, Mario Damiano [3 ]
Bandello, Francesco [4 ,5 ]
Reibaldi, Michele [1 ,2 ]
机构
[1] Univ Turin, Dept Surg Sci, Div Ophthalmol, Via Verdi 8, I-10124 Turin, Italy
[2] City Hlth & Sci Hosp, Dept Ophthalmol, I-10126 Turin, Italy
[3] Univ Naples Federico II, Publ Hlth Dept, Eye Clin, I-80138 Naples, Italy
[4] Univ Vita Salute San Raffaele, Dept Ophthalmol, I-20132 Milan, Italy
[5] IRCCS San Raffaele Sci Inst, I-20132 Milan, Italy
来源
MEDICINA-LITHUANIA | 2024年 / 60卷 / 06期
关键词
age-related macular degeneration; optical coherence tomography; neovascularization; neovascular age-related macular degeneration; artificial intelligence; deep learning; biomarker; TOMOGRAPHIC HYPERREFLECTIVE FOCI; PIGMENT EPITHELIAL DETACHMENT; ANTI-VEGF TREATMENT; DIABETIC-RETINOPATHY; INTRAVITREAL BEVACIZUMAB; AUTOMATED DETECTION; VISUAL OUTCOMES; PREDICTION; QUANTIFICATION; ASSOCIATION;
D O I
10.3390/medicina60060990
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background and objectives: Age-related macular degeneration (AMD) is a complex and multifactorial condition that can lead to permanent vision loss once it progresses to the neovascular exudative stage. This review aims to summarize the use of deep learning in neovascular AMD. Materials and Methods: Pubmed search. Results: Deep learning has demonstrated effectiveness in analyzing structural OCT images in patients with neovascular AMD. This review outlines the role of deep learning in identifying and measuring biomarkers linked to an elevated risk of transitioning to the neovascular form of AMD. Additionally, deep learning techniques can quantify critical OCT features associated with neovascular AMD, which have prognostic implications for these patients. Incorporating deep learning into the assessment of neovascular AMD eyes holds promise for enhancing clinical management strategies for affected individuals. Conclusion: Several studies have demonstrated effectiveness of deep learning in assessing neovascular AMD patients and this has a promising role in the assessment of these patients.
引用
收藏
页数:11
相关论文
共 77 条
[51]   Quantitative Analysis of OCT for Neovascular Age-Related Macular Degeneration Using Deep Learning [J].
Moraes, Gabriella ;
Fu, Dun Jack ;
Wilson, Marc ;
Khalid, Hagar ;
Wagner, Siegfried K. ;
Korot, Edward ;
Ferraz, Daniel ;
Faes, Livia ;
Kelly, Christopher J. ;
Spitz, Terry ;
Patel, Praveen J. ;
Balaskas, Konstantinos ;
Keenan, Tiarnan D. L. ;
Keane, Pearse A. ;
Chopra, Reena .
OPHTHALMOLOGY, 2021, 128 (05) :693-705
[52]   TYPE 3 NEOVASCULARIZATION Evolution, Association With Pigment Epithelial Detachment, and Treatment Response as Revealed by Spectral Domain Optical Coherence Tomography [J].
Nagiel, Aaron ;
Sarraf, David ;
Sadda, Srinivas R. ;
Spaide, Richard F. ;
Jung, Jesse J. ;
Bhavsar, Kavita V. ;
Ameri, Hossein ;
Querques, Giuseppe ;
Freund, K. Bailey .
RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2015, 35 (04) :638-647
[53]   Microglia/Macrophages Migrate through Retinal Epithelium Barrier by a Transcellular Route in Diabetic Retinopathy Role of PKCζ in the Goto Kakizaki Rat Model [J].
Omri, Samy ;
Behar-Cohen, Francine ;
de Kozak, Yvonne ;
Sennlaub, Florian ;
Verissimo, Lourena Mafra ;
Jonet, Laurent ;
Savoldelli, Michele ;
Omri, Boubaker ;
Crisanti, Patricia .
AMERICAN JOURNAL OF PATHOLOGY, 2011, 179 (02) :942-953
[54]   Probabilistic Forecasting of Anti-VEGF Treatment Frequency in Neovascular Age-Related Macular Degeneration [J].
Pfau, Maximilian ;
Sahu, Soumya ;
Rupnow, Rawan Allozi ;
Romond, Kathleen ;
Millet, Desiree ;
Holz, Frank G. ;
Schmitz-Valckenberg, Steffen ;
Fleckenstein, Monika ;
Lim, Jennifer, I ;
de Sisternes, Luis ;
Leng, Theodore ;
Rubin, Daniel L. ;
Hallak, Joelle A. .
TRANSLATIONAL VISION SCIENCE & TECHNOLOGY, 2021, 10 (07)
[55]   The potential of spectral domain optical coherence tomography imaging based retinal biomarkers [J].
Phadikar P. ;
Saxena S. ;
Ruia S. ;
Lai T.Y. ;
Meyer C.H. ;
Eliott D. .
International Journal of Retina and Vitreous, 3 (1)
[56]   PROGNOSTIC VALUE OF SUBRETINAL HYPERREFLECTIVE MATERIAL IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION TREATED WITH BEVACIZUMAB [J].
Pokroy, Russell ;
Mimouni, Michael ;
Barayev, Edward ;
Segev, Fani ;
Geffen, Noa ;
Nemet, Arie Y. ;
Segal, Ori .
RETINA-THE JOURNAL OF RETINAL AND VITREOUS DISEASES, 2018, 38 (08) :1485-1491
[57]   Validation of a deep learning model for automatic detection and quantification of five OCT critical retinal features associated with neovascular age-related macular degeneration [J].
Ricardi, Federico ;
Oakley, Jonathan ;
Russakoff, Daniel ;
Boscia, Giacomo ;
Caselgrandi, Paolo ;
Gelormini, Francesco ;
Ghilardi, Andrea ;
Pintore, Giulia ;
Tibaldi, Tommaso ;
Marolo, Paola ;
Bandello, Francesco ;
Reibaldi, Michele ;
Borrelli, Enrico .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2024, 108 (10) :1436-1442
[58]   Relationship of Topographic Distribution of Macular Atrophy Secondary to Neovascular AMD and Reading Performance [J].
Ricardi, Federico ;
Borrelli, Enrico ;
Boscia, Giacomo ;
Gelormini, Francesco ;
Marica, Valentina ;
Conte, Fabio ;
Viggiano, Pasquale ;
Marolo, Paola ;
Bandello, Francesco ;
Reibaldi, Michele .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2024, 65 (01)
[59]   Deep Learning for Prediction of AMD Progression: A Pilot Study [J].
Russakoff, Daniel B. ;
Lamin, Ali ;
Oakley, Jonathan D. ;
Dubis, Adam M. ;
Sivaprasad, Sobha .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (02) :712-722
[60]   OCT-A characterisation of recurrent type 3 macular neovascularisation [J].
Sacconi, Riccardo ;
Battista, Marco ;
Borrelli, Enrico ;
Miere, Alexandra ;
Corbelli, Eleonora ;
Capuano, Vittorio ;
Querques, Lea ;
Souied, Eric H. ;
Bandello, Francesco ;
Querques, Giuseppe .
BRITISH JOURNAL OF OPHTHALMOLOGY, 2021, 105 (02) :222-226