Meta Learning with Attention Based FP-GNNs for Few-Shot Molecular Property Prediction

被引:2
作者
Qian, Xiaoliang [1 ,2 ,3 ]
Ju, Bin [3 ,4 ]
Shen, Ping [4 ]
Yang, Keda [5 ]
Li, Li [6 ]
Liu, Qi [1 ,2 ,7 ,8 ]
机构
[1] Tongji Univ, Translat Med Ctr Stem Cell Therapy, Shanghai 200092, Peoples R China
[2] Tongji Univ, Shanghai East Hosp, Frontier Sci Ctr Stem Cell Res, Inst Regenerat Med,Bioinformat Dept,Sch Life Sci, Shanghai 200092, Peoples R China
[3] SanOmics AI Co Ltd, Hangzhou 311103, Peoples R China
[4] Zhejiang Univ, Affiliated Hosp 1, Collaborat Innovat Ctr Diag & Treatment Infect Di, Natl Clin Res Ctr Infect Dis,State Key Lab Diag &, Hangzhou 310009, Peoples R China
[5] Zhejiang Shuren Univ, Shulan Int Med Coll, Hangzhou 310015, Peoples R China
[6] First Peoples Hosp Kunming, Dept Hepatobiliary Surg, Kunming 650034, Peoples R China
[7] Tongji Univ, Tongji Hosp, Frontier Sci Ctr Stem Cell Res, Sch Life Sci & Technol,Minist Educ,Orthopaed Dept, Shanghai 200092, Peoples R China
[8] Shanghai Res Inst Intelligent Autonomous Syst, Shanghai 201804, Peoples R China
来源
ACS OMEGA | 2024年 / 9卷 / 22期
基金
中国国家自然科学基金;
关键词
D O I
10.1021/acsomega.4c02147
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Molecular property prediction holds significant importance in drug discovery, enabling the identification of biologically active compounds with favorable drug-like properties. However, the low data problem, arising from the scarcity of labeled data in drug discovery, poses a substantial obstacle for accurate predictions. To address this challenge, we introduce a novel architecture, AttFPGNN-MAML, for few-shot molecular property prediction. The proposed approach incorporates a hybrid feature representation to enrich molecular representations and model intermolecular relationships specific to the task. By leveraging ProtoMAML, a meta-learning strategy, our model is trained and adapted to new tasks. Evaluation on two few-shot data sets, MoleculeNet and FS-Mol, demonstrates our method's superior performance in three out of four tasks and across various support set sizes. These results convincingly validate the effectiveness of our method in the realm of few-shot molecular property prediction. The source code is publicly available at https://github.com/sanomics-lab/AttFPGNN-MAML.
引用
收藏
页码:23940 / 23948
页数:9
相关论文
共 48 条
  • [1] A multi-task FP-GNN framework enables accurate prediction of selective PARP inhibitors
    Ai, Daiqiao
    Wu, Jingxing
    Cai, Hanxuan
    Zhao, Duancheng
    Chen, Yihao
    Wei, Jiajia
    Xu, Jianrong
    Zhang, Jiquan
    Wang, Ling
    [J]. FRONTIERS IN PHARMACOLOGY, 2022, 13
  • [2] Alain G., 2016, ARXIV, DOI DOI 10.48550/ARXIV.1610.01644
  • [3] Low Data Drug Discovery with One-Shot Learning
    Altae-Tran, Han
    Ramsundar, Bharath
    Pappu, Aneesh S.
    Pande, Vijay
    [J]. ACS CENTRAL SCIENCE, 2017, 3 (04) : 283 - 293
  • [4] Antoniou A., 2019, ARXIV, DOI DOI 10.48550/ARXIV.1902.09884
  • [5] Bendre N, 2020, ARXIV200715484, DOI [10.48550/arXiv.2007.15484, DOI 10.48550/ARXIV.2007.15484]
  • [6] Bolton E.E., 2008, PubChem: Integrated Platform of Small Molecules and Biological Activities, V4, P217, DOI [DOI 10.1016/S1574-1400, https://doi.org/10.1016/S1574-1400]
  • [7] Random forests
    Breiman, L
    [J]. MACHINE LEARNING, 2001, 45 (01) : 5 - 32
  • [8] FP-GNN: a versatile deep learning architecture for enhanced molecular property prediction
    Cai, Hanxuan
    Zhang, Huimin
    Zhao, Duancheng
    Wu, Jingxing
    Wang, Ling
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (06)
  • [9] Chen Ting, 2019, 25 AMERICAS C INFORM, DOI DOI 10.22489/CINC.2017.065-469
  • [10] Chen W., 2023, ARXIV, DOI DOI 10.48550/ARXIV.2205.02708