Predicting the Global Potential Suitable Distribution of Fall Armyworm and Its Host Plants Based on Machine Learning Models

被引:4
作者
Huang, Yanru [1 ,2 ]
Dong, Yingying [1 ,2 ]
Huang, Wenjiang [1 ,2 ]
Guo, Jing [1 ,2 ]
Hao, Zhuoqing [1 ,2 ]
Zhao, Mingxian [1 ,2 ]
Hu, Bohai [1 ,2 ]
Cheng, Xiangzhe [1 ,2 ]
Wang, Minghao [1 ,2 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, State Key Lab Remote Sensing Sci, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
基金
国家重点研发计划;
关键词
fall armyworm; polyphagous insect; overlapping suitable areas; interaction links; climate change; EARTH SYSTEM MODEL; SPODOPTERA-FRUGIPERDA; CLIMATE-CHANGE; MANAGEMENT; ALGORITHMS; OPTIONS; PESTS; CMIP5;
D O I
10.3390/rs16122060
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The fall armyworm (Spodoptera frugiperda) (J. E. Smith) is a widespread, polyphagous, and highly destructive agricultural pest. Global climate change may facilitate its spread to new suitable areas, thereby increasing threats to host plants. Consequently, predicting the potential suitable distribution for the fall armyworm and its host plants under current and future climate scenarios is crucial for assessing its outbreak risks and formulating control strategies. This study, based on remote sensing assimilation data and plant protection survey data, utilized machine learning methods (RF, CatBoost, XGBoost, LightGBM) to construct potential distribution prediction models for the fall armyworm and its 120 host plants. Hyperparameter methods and stacking ensemble method (SEL) were introduced to optimize the models. The results showed that SEL demonstrated optimal performance in predicting the suitable distribution for the fall armyworm, with an AUC of 0.971 +/- 0.012 and a TSS of 0.824 +/- 0.047. Additionally, LightGBM and SEL showed optimal performance in predicting the suitable distribution for 47 and 30 host plants, respectively. Overlay analysis suggests that the overlap areas and interaction links between the suitable areas for the fall armyworm and its host plants will generally increase in the future, with the most significant rise under the RCP8.5 climate scenario, indicating that the threat to host plants will further intensify due to climate change. The findings of this study provide data support for planning and implementing global and intercontinental long-term pest management measures aimed at mitigating the impact of the fall armyworm on global food production.
引用
收藏
页数:18
相关论文
共 79 条
[1]   Species Distribution Modelling performance and its implication for Sentinel-2-based prediction of invasive Prosopis juliflora in lower Awash River basin, Ethiopia [J].
Ahmed, Nurhussen ;
Atzberger, Clement ;
Zewdie, Worku .
ECOLOGICAL PROCESSES, 2021, 10 (01)
[2]   Potential impact of climate change on whiteflies and implications for the spread of vectored viruses [J].
Aregbesola, Oluwatosin Z. ;
Legg, James P. ;
Sigsgaard, Lene ;
Lund, Ole S. ;
Rapisarda, Carmelo .
JOURNAL OF PEST SCIENCE, 2019, 92 (02) :381-392
[3]   Status and control measures of fall armyworm (Spodoptera frugiperda) infestations in maize fields in Ethiopia: A review [J].
Assefa, Fenta ;
Ayalew, Dereje .
COGENT FOOD & AGRICULTURE, 2019, 5 (01)
[4]   Potential Management Options for the Invasive Moth Spodoptera frugiperda in Europe [J].
Babendreier, Dirk ;
Toepfer, Stefan ;
Bateman, Melanie ;
Kenis, Marc ;
Brewer, Michael .
JOURNAL OF ECONOMIC ENTOMOLOGY, 2022, 115 (06) :1772-1782
[5]   The Efficacy of Alternative, Environmentally Friendly Plant Protection Measures for Control of Fall Armyworm, Spodoptera Frugiperda, in Maize [J].
Babendreier, Dirk ;
Agboyi, Lakpo Koku ;
Beseh, Patrick ;
Osae, Michael ;
Nboyine, Jerry ;
Ofori, Selorm E. K. ;
Frimpong, Justice O. ;
Clottey, Victor Attuquaye ;
Kenis, Marc .
INSECTS, 2020, 11 (04)
[6]   Selecting pseudo-absences for species distribution models: how, where and how many? [J].
Barbet-Massin, Morgane ;
Jiguet, Frederic ;
Albert, Cecile Helene ;
Thuiller, Wilfried .
METHODS IN ECOLOGY AND EVOLUTION, 2012, 3 (02) :327-338
[7]   Range-Expanding Pests and Pathogens in a Warming World [J].
Bebber, Daniel Patrick .
ANNUAL REVIEW OF PHYTOPATHOLOGY, VOL 53, 2015, 53 :335-356
[8]   The Norwegian Earth System Model, NorESM1-M - Part 1: Description and basic evaluation of the physical climate [J].
Bentsen, M. ;
Bethke, I. ;
Debernard, J. B. ;
Iversen, T. ;
Kirkevag, A. ;
Seland, O. ;
Drange, H. ;
Roelandt, C. ;
Seierstad, I. A. ;
Hoose, C. ;
Kristjansson, J. E. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2013, 6 (03) :687-720
[9]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[10]   The ACCESS coupled model: description, control climate and evaluation [J].
Bi, Daohua ;
Dix, Martin ;
Marsland, Simon J. ;
O'Farrell, Siobhan ;
Rashid, Harun A. ;
Uotila, Petteri ;
Hirst, Anthony C. ;
Kowalczyk, Eva ;
Golebiewski, Maciej ;
Sullivan, Arnold ;
Yan, Hailin ;
Hannah, Nicholas ;
Franklin, Charmaine ;
Sun, Zhian ;
Vohralik, Peter ;
Watterson, Ian ;
Zhou, Xiaobing ;
Fiedler, Russell ;
Collier, Mark ;
Ma, Yimin ;
Noonan, Julie ;
Stevens, Lauren ;
Uhe, Peter ;
Zhu, Hongyan ;
Griffies, Stephen M. ;
Hill, Richard ;
Harris, Chris ;
Puri, Kamal .
AUSTRALIAN METEOROLOGICAL AND OCEANOGRAPHIC JOURNAL, 2013, 63 (01) :41-64