A dynamic multi-objective optimization evolutionary algorithm with adaptive boosting

被引:5
作者
Peng, Hu [1 ,2 ]
Xiong, Jianpeng [1 ]
Pi, Chen [1 ]
Zhou, Xinyu [3 ]
Wu, Zhijian [4 ]
机构
[1] Jiujiang Univ, Sch Comp & Big Data Sci, Jiujiang 332005, Peoples R China
[2] Jiujiang Key Lab Digital Technol, Jiujiang 332005, Peoples R China
[3] Jiangxi Normal Univ, Sch Comp & Informat Engn, Nanchang 330022, Peoples R China
[4] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
关键词
Dynamic multi-objective evolutionary; algorithm; Dynamic multi-objective optimization problem; Adaptive boosting mechanism; PREDICTION STRATEGY; SEVERITY; HYBRID;
D O I
10.1016/j.swevo.2024.101621
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic multi -objective optimization problems (DMOPs) are prevalent in the real world, where the challenge in solving DMOPs is how to track the time -varying Pareto-optimal front (PF) and Pareto-optimal set (PS) quickly and accurately. However, balancing convergence and diversity is challenging as a single strategy can only address a particular type of DMOP. To solve this issue, a dynamic multi -objective optimization evolutionary algorithm with adaptive boosting (AB-DMOEA) is proposed in this paper. In the AB-DMOEA, an adaptive boosting response mechanism will increase the weights of high -performing strategies, including those based on prediction, memory, and diversity, which have been improved and integrated into the mechanism to tackle various problems. Additionally, the dominated solutions reinforcement strategy optimizes the population to ensure the effective operation of the above mechanism. In static optimization, the static optimization boosting mechanism selects the appropriate static multi -objective optimizer for the current problem. AB-DMOEA is compared with the other seven state-of-the-art DMOEAs on 35 benchmark DMOPs. The comprehensive experimental results demonstrate that the overall performance of the AB-DMOEA is superior or comparable to that of the compared algorithms. The proposed AB-DMOEA is also successfully applied to the smart greenhouses problem.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] An evolutionary multi-objective optimization system for earthworks
    Parente, M.
    Cortez, P.
    Gomes Correia, A.
    EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (19) : 6674 - 6685
  • [22] A study on multiform multi-objective evolutionary optimization
    Zhang, Liangjie
    Xie, Yuling
    Chen, Jianjun
    Feng, Liang
    Chen, Chao
    Liu, Kai
    MEMETIC COMPUTING, 2021, 13 (03) : 307 - 318
  • [23] Weighted preferences in evolutionary multi-objective optimization
    Friedrich, Tobias
    Kroeger, Trent
    Neumann, Frank
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (02) : 139 - 148
  • [24] A change severity degree-based dynamic multi-objective optimization algorithm with adaptive response strategy
    Kouka, Najwa
    Fourati, Rahma
    Fdhila, Raja
    Hussain, Amir
    Alimi, Adel M.
    INFORMATION SCIENCES, 2024, 677
  • [25] A dynamic multi-objective evolutionary algorithm with variable stepsize and dual prediction strategies
    Peng, Hu
    Pi, Chen
    Xiong, Jianpeng
    Fan, Debin
    Shen, Fanfan
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2024, 161 : 390 - 403
  • [26] A Hybrid Framework for Evolutionary Multi-objective Optimization
    Sindhya, Karthik
    Miettinen, Kaisa
    Deb, Kalyanmoy
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2013, 17 (04) : 495 - 511
  • [27] A predictive strategy based on special points for evolutionary dynamic multi-objective optimization
    Li, Qingya
    Zou, Juan
    Yang, Shengxiang
    Zheng, Jinhua
    Ruan, Gan
    SOFT COMPUTING, 2019, 23 (11) : 3723 - 3739
  • [28] Multi-objective Flower Algorithm for Optimization
    Yang, Xin-She
    Karamanoglu, Mehmet
    He, Xingshi
    2013 INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, 2013, 18 : 861 - 868
  • [29] Ensemble methods based on characterization of dynamism for dynamic multi-objective optimization
    Jiang, Chuwen
    Ge, Fangzhen
    Chen, Debao
    Liu, Huaiyu
    APPLIED SOFT COMPUTING, 2022, 129
  • [30] A dynamic multi-objective evolutionary algorithm based on gene sequencing and gene editing
    Yang, Yue
    Ma, Yongjie
    Wang, Minghao
    Wang, Peidi
    INFORMATION SCIENCES, 2023, 644