A dynamic multi-objective optimization evolutionary algorithm with adaptive boosting

被引:8
作者
Peng, Hu [1 ,2 ]
Xiong, Jianpeng [1 ]
Pi, Chen [1 ]
Zhou, Xinyu [3 ]
Wu, Zhijian [4 ]
机构
[1] Jiujiang Univ, Sch Comp & Big Data Sci, Jiujiang 332005, Peoples R China
[2] Jiujiang Key Lab Digital Technol, Jiujiang 332005, Peoples R China
[3] Jiangxi Normal Univ, Sch Comp & Informat Engn, Nanchang 330022, Peoples R China
[4] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
关键词
Dynamic multi-objective evolutionary; algorithm; Dynamic multi-objective optimization problem; Adaptive boosting mechanism; PREDICTION STRATEGY; SEVERITY; HYBRID;
D O I
10.1016/j.swevo.2024.101621
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic multi -objective optimization problems (DMOPs) are prevalent in the real world, where the challenge in solving DMOPs is how to track the time -varying Pareto-optimal front (PF) and Pareto-optimal set (PS) quickly and accurately. However, balancing convergence and diversity is challenging as a single strategy can only address a particular type of DMOP. To solve this issue, a dynamic multi -objective optimization evolutionary algorithm with adaptive boosting (AB-DMOEA) is proposed in this paper. In the AB-DMOEA, an adaptive boosting response mechanism will increase the weights of high -performing strategies, including those based on prediction, memory, and diversity, which have been improved and integrated into the mechanism to tackle various problems. Additionally, the dominated solutions reinforcement strategy optimizes the population to ensure the effective operation of the above mechanism. In static optimization, the static optimization boosting mechanism selects the appropriate static multi -objective optimizer for the current problem. AB-DMOEA is compared with the other seven state-of-the-art DMOEAs on 35 benchmark DMOPs. The comprehensive experimental results demonstrate that the overall performance of the AB-DMOEA is superior or comparable to that of the compared algorithms. The proposed AB-DMOEA is also successfully applied to the smart greenhouses problem.
引用
收藏
页数:22
相关论文
共 69 条
[1]   A dynamic multi-objective evolutionary algorithm using a change severity-based adaptive population management strategy [J].
Azzouz, Radhia ;
Bechikh, Slim ;
Ben Said, Lamjed .
SOFT COMPUTING, 2017, 21 (04) :885-906
[2]  
Biswas S, 2014, 2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), P3192, DOI 10.1109/CEC.2014.6900487
[3]   The balance between proximity and diversity in multiobjective evolutionary algorithms [J].
Bosman, PAN ;
Thierens, D .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2003, 7 (02) :174-188
[4]   Decomposition-based evolutionary dynamic multiobjective optimization using a difference model [J].
Cao, Leilei ;
Xu, Lihong ;
Goodman, Erik D. ;
Li, Hui .
APPLIED SOFT COMPUTING, 2019, 76 :473-490
[5]   A hybrid fuzzy inference prediction strategy for dynamic multi-objective optimization [J].
Chen, Debao ;
Zou, Feng ;
Lu, Renquan ;
Wang, Xude .
SWARM AND EVOLUTIONARY COMPUTATION, 2018, 43 :147-165
[6]   A domain adaptation learning strategy for dynamic multiobjective optimization [J].
Chen, Guoyu ;
Guo, Yinan ;
Huang, Mingyi ;
Gong, Dunwei ;
Yu, Zekuan .
INFORMATION SCIENCES, 2022, 606 :328-349
[7]   Dynamic multiobjective evolutionary algorithm with adaptive response mechanism selection strategy [J].
Chen, Liang ;
Wang, Hanyang ;
Pan, Darong ;
Wang, Hao ;
Gan, Wenyan ;
Wang, Duodian ;
Zhu, Tao .
KNOWLEDGE-BASED SYSTEMS, 2022, 246
[8]   Dynamic Multiobjectives Optimization With a Changing Number of Objectives [J].
Chen, Renzhi ;
Li, Ke ;
Yao, Xin .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2018, 22 (01) :157-171
[9]   Combining a hybrid prediction strategy and a mutation strategy for dynamic multiobjective optimization [J].
Chen, Ying ;
Zou, Juan ;
Liu, Yuan ;
Yang, Shengxiang ;
Zheng, Jinhua ;
Huang, Weixiong .
SWARM AND EVOLUTIONARY COMPUTATION, 2022, 70
[10]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197