A physical-layer Rogue ONU identification method based on hardware fingerprint technology

被引:0
作者
Liu, Kaiyu [1 ,2 ]
Huang, Danming [1 ,2 ]
Tang, Chengzhe [1 ,2 ]
Deng, Lei [1 ,2 ]
Yang, Qi [1 ,2 ]
Dai, Xiaoxiao [1 ,2 ]
Liu, Deming [1 ,2 ]
Cheng, Mengfan [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol HUST, Sch Opt & Elect Informat, Natl Engn Res Ctr Next Generat Internet Access Sy, Wuhan 430074, Peoples R China
[2] Jinyinhu Lab, Wuhan 430040, Peoples R China
来源
2024 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION, OFC | 2024年
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a method for identifying rogue ONUs based on hardware fingerprint technology. By directly detecting waveform fingerprints, the experimental results show that the average identification accuracy within 16 ONUs can reach 96.74%. (c) 2024 The Author(s)
引用
收藏
页数:3
相关论文
共 7 条
  • [1] C. M, 2003, JSAC
  • [2] Elrasad A, 2017, 2017 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC)
  • [3] Gong H, 2021, ACP
  • [4] Enhancing the Physical Layer Security of OFDM-PONs With Hardware Fingerprint Authentication: A Machine Learning Approach
    Li, Shanshan
    Cheng, Mengfan
    Chen, Yetao
    Fan, Chengpeng
    Deng, Lei
    Zhang, Minming
    Fu, Songnian
    Tang, Ming
    Shum, Perry Ping
    Liu, Deming
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (12) : 3238 - 3245
  • [5] Li Y, 2019, REAL TIME ROGUE ONU
  • [6] Oishi M, 2010, 2010 36TH EUROPEAN CONFERENCE AND EXHIBITION ON OPTICAL COMMUNICATION (ECOC), VOLS 1 AND 2
  • [7] Machine Learning Techniques for Optical Performance Monitoring and Modulation Format Identification: A Survey
    Saif, Waddah S.
    Esmail, Maged A.
    Ragheb, Amr M.
    Alshawi, Tariq A.
    Alshebeili, Saleh A.
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2020, 22 (04): : 2839 - 2882