Transformer-based out-of-distribution detection for clinically safe segmentation

被引:0
|
作者
Graham, Mark S. [1 ]
Tudosiu, Petru-Daniel [1 ]
Wright, Paul [1 ]
Pinaya, Walter Hugo Lopez [1 ]
U-King-Im, Jean-Marie [2 ]
Mah, Yee H. [1 ,2 ]
Teo, James T. [2 ,3 ]
Jager, Rolf [4 ]
Werring, David [5 ]
Nachev, Parashkev [4 ]
Ourselin, Sebastien [1 ]
Cardoso, M. Jorge [1 ]
机构
[1] Kings Coll London, Dept Biomed Engn, Sch Biomed Engn & Imaging Sci, London, England
[2] Kings Coll Hosp NHS Fdn Trust, Denmark Hill, London, England
[3] Kings Coll London, Inst Psychiat Psychol & Neurosci, London, England
[4] UCL, Inst Neurol, London, England
[5] UCL Queen Sq Inst Neurol, Stroke Res Ctr, London, England
来源
INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172 | 2022年 / 172卷
基金
“创新英国”项目; 英国工程与自然科学研究理事会; 英国医学研究理事会; 英国惠康基金;
关键词
Transformers; out-of-distribution detection; segmentation; uncertainty;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a clinical setting it is essential that deployed image processing systems are robust to the full range of inputs they might encounter and, in particular, do not make confidently wrong predictions. The most popular approach to safe processing is to train networks that can provide a measure of their uncertainty, but these tend to fail for inputs that are far outside the training data distribution. Recently, generative modelling approaches have been proposed as an alternative; these can quantify the likelihood of a data sample explicitly, filtering out any out-of-distribution (OOD) samples before further processing is performed. In this work, we focus on image segmentation and evaluate several approaches to network uncertainty in the far-OOD and near-OOD cases for the task of segmenting haemorrhages in head CTs. We find all of these approaches are unsuitable for safe segmentation as they provide confidently wrong predictions when operating OOD. We propose performing full 3D OOD detection using a VQ-GAN to provide a compressed latent representation of the image and a transformer to estimate the data likelihood. Our approach successfully identifies images in both the far- and near-OOD cases. We find a strong relationship between image likelihood and the quality of a model's segmentation, making this approach viable for filtering images unsuitable for segmentation. To our knowledge, this is the first time transformers have been applied to perform OOD detection on 3D image data.
引用
收藏
页码:457 / 475
页数:19
相关论文
共 50 条
  • [31] Characterizing Submanifold Region for Out-of-Distribution Detection
    Li, Xuhui
    Fang, Zhen
    Zhang, Yonggang
    Ma, Ning
    Bu, Jiajun
    Han, Bo
    Wang, Haishuai
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (01) : 130 - 147
  • [32] Out-of-Distribution Detection with Virtual Outlier Smoothing
    Nie, Jun
    Luo, Yadan
    Ye, Shanshan
    Zhang, Yonggang
    Tian, Xinmei
    Fang, Zhen
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2025, 133 (02) : 724 - 741
  • [33] Full-Spectrum Out-of-Distribution Detection
    Yang, Jingkang
    Zhou, Kaiyang
    Liu, Ziwei
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2023, 131 (10) : 2607 - 2622
  • [34] DICE: Leveraging Sparsification for Out-of-Distribution Detection
    Sun, Yiyou
    Li, Yixuan
    COMPUTER VISION, ECCV 2022, PT XXIV, 2022, 13684 : 691 - 708
  • [35] Gradient-Regularized Out-of-Distribution Detection
    Sharifi, Sina
    Entesari, Taha
    Safaei, Bardia
    Patel, Vishal M.
    Fazlyab, Mahyar
    COMPUTER VISION - ECCV 2024, PT XIII, 2025, 15071 : 459 - 478
  • [36] Out-of-Distribution Detection by Cross-Class Vicinity Distribution of In-Distribution Data
    Zhao, Zhilin
    Cao, Longbing
    Lin, Kun-Yu
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (10) : 13777 - 13788
  • [37] Full-Spectrum Out-of-Distribution Detection
    Jingkang Yang
    Kaiyang Zhou
    Ziwei Liu
    International Journal of Computer Vision, 2023, 131 : 2607 - 2622
  • [38] Gaussian-Based Approach for Out-of-Distribution Detection in Deep Learning
    Carvalho, Thiago
    Vellasco, Marley
    Amaral, Jose Franco
    24TH INTERNATIONAL CONFERENCE ON ENGINEERING APPLICATIONS OF NEURAL NETWORKS, EAAAI/EANN 2023, 2023, 1826 : 303 - 314
  • [39] An Efficient Anomalous Action Recognition Model Based on Out-of-Distribution Detection
    Yu, Pei-Lun
    Chou, Po-Yung
    Lin, Cheng-Hung
    Kao, Wen-Chung
    IEEE ISPCE-ASIA 2021: IEEE INTERNATIONAL SYMPOSIUM ON PRODUCT COMPLIANCE ENGINEERING - ASIA, 2021,
  • [40] Effective Out-of-Distribution Detection in Classifier Based on PEDCC-Loss
    Zhu, Qiuyu
    Zheng, Guohui
    Yan, Yingying
    NEURAL PROCESSING LETTERS, 2023, 55 (02) : 1937 - 1949