Transformer-based out-of-distribution detection for clinically safe segmentation

被引:0
|
作者
Graham, Mark S. [1 ]
Tudosiu, Petru-Daniel [1 ]
Wright, Paul [1 ]
Pinaya, Walter Hugo Lopez [1 ]
U-King-Im, Jean-Marie [2 ]
Mah, Yee H. [1 ,2 ]
Teo, James T. [2 ,3 ]
Jager, Rolf [4 ]
Werring, David [5 ]
Nachev, Parashkev [4 ]
Ourselin, Sebastien [1 ]
Cardoso, M. Jorge [1 ]
机构
[1] Kings Coll London, Dept Biomed Engn, Sch Biomed Engn & Imaging Sci, London, England
[2] Kings Coll Hosp NHS Fdn Trust, Denmark Hill, London, England
[3] Kings Coll London, Inst Psychiat Psychol & Neurosci, London, England
[4] UCL, Inst Neurol, London, England
[5] UCL Queen Sq Inst Neurol, Stroke Res Ctr, London, England
来源
INTERNATIONAL CONFERENCE ON MEDICAL IMAGING WITH DEEP LEARNING, VOL 172 | 2022年 / 172卷
基金
“创新英国”项目; 英国工程与自然科学研究理事会; 英国医学研究理事会; 英国惠康基金;
关键词
Transformers; out-of-distribution detection; segmentation; uncertainty;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In a clinical setting it is essential that deployed image processing systems are robust to the full range of inputs they might encounter and, in particular, do not make confidently wrong predictions. The most popular approach to safe processing is to train networks that can provide a measure of their uncertainty, but these tend to fail for inputs that are far outside the training data distribution. Recently, generative modelling approaches have been proposed as an alternative; these can quantify the likelihood of a data sample explicitly, filtering out any out-of-distribution (OOD) samples before further processing is performed. In this work, we focus on image segmentation and evaluate several approaches to network uncertainty in the far-OOD and near-OOD cases for the task of segmenting haemorrhages in head CTs. We find all of these approaches are unsuitable for safe segmentation as they provide confidently wrong predictions when operating OOD. We propose performing full 3D OOD detection using a VQ-GAN to provide a compressed latent representation of the image and a transformer to estimate the data likelihood. Our approach successfully identifies images in both the far- and near-OOD cases. We find a strong relationship between image likelihood and the quality of a model's segmentation, making this approach viable for filtering images unsuitable for segmentation. To our knowledge, this is the first time transformers have been applied to perform OOD detection on 3D image data.
引用
收藏
页码:457 / 475
页数:19
相关论文
共 50 条
  • [21] Distance-based detection of out-of-distribution silent failures for Covid-19 lung lesion segmentation
    Gonzalez, Camila
    Gotkowski, Karol
    Fuchs, Moritz
    Bucher, Andreas
    Dadras, Armin
    Fischbach, Ricarda
    Kaltenborn, Isabel Jasmin
    Mukhopadhyay, Anirban
    MEDICAL IMAGE ANALYSIS, 2022, 82
  • [22] Out-of-Distribution Detection Using Outlier Detection Methods
    Diers, Jan
    Pigorsch, Christian
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2022, PT III, 2022, 13233 : 15 - 26
  • [23] Transformer-Based Innovations in Medical Image Segmentation: A Mini Review
    Ovais Iqbal Shah
    Danish Raza Rizvi
    Aqib Nazir Mir
    SN Computer Science, 6 (4)
  • [24] An Efficient Data Augmentation Network for Out-of-Distribution Image Detection
    Lin, Cheng-Hung
    Lin, Cheng-Shian
    Chou, Po-Yung
    Hsu, Chen-Chien
    IEEE ACCESS, 2021, 9 : 35313 - 35323
  • [25] Out-of-distribution detection by regaining lost clues
    Zhao, Zhilin
    Cao, Longbing
    Yu, Philip S.
    ARTIFICIAL INTELLIGENCE, 2025, 339
  • [26] Transformer-based semantic segmentation and CNN network for detection of histopathological lung cancer
    Talib, Lareib Fatima
    Amin, Javaria
    Sharif, Muhammad
    Raza, Mudassar
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 92
  • [27] A Simple Framework for Robust Out-of-Distribution Detection
    Hur, Youngbum
    Yang, Eunho
    Hwang, Sung Ju
    IEEE ACCESS, 2022, 10 : 23086 - 23097
  • [28] Language Models as Reasoners for Out-of-Distribution Detection
    Kirchheim, Konstantin
    Ortmeier, Frank
    COMPUTER SAFETY, RELIABILITY, AND SECURITY. SAFECOMP 2024 WORKSHOPS, 2024, 14989 : 379 - 390
  • [29] Weighted Mutual Information for Out-Of-Distribution Detection
    De Bernardi, Giacomo
    Narteni, Sara
    Cambiaso, Enrico
    Muselli, Marco
    Mongelli, Maurizio
    EXPLAINABLE ARTIFICIAL INTELLIGENCE, XAI 2023, PT III, 2023, 1903 : 318 - 331
  • [30] Decomposing texture and semantic for out-of-distribution detection
    Moon, Jeong-Hyeon
    Ahn, Namhyuk
    Sohn, Kyung-Ah
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238