AI-Driven Thoracic X-ray Diagnostics: Transformative Transfer Learning for Clinical Validation in Pulmonary Radiography

被引:0
作者
Sufian, Md Abu [1 ,2 ]
Hamzi, Wahiba [3 ]
Sharifi, Tazkera [4 ]
Zaman, Sadia [5 ]
Alsadder, Lujain [5 ]
Lee, Esther [5 ]
Hakim, Amir [5 ]
Hamzi, Boumediene [6 ,7 ,8 ,9 ]
机构
[1] Changan Univ, IVR Low Carbon Res Inst, Xian 710018, Peoples R China
[2] Univ Leicester, Sch Comp & Math Sci, Leicester LE1 7RH, England
[3] Univ Blida, Dept Biol, Lab Biotechnol Sante & Environm, Blida 09000, Algeria
[4] Booz Allen Hamilton, Data Sci Architect Lead Technologist, Texas City, TX 78226 USA
[5] Queen Mary Univ, Dept Physiol, London E1 4NS, England
[6] CALTECH, Dept Comp & Math Sci, Caltech, Pasadena, CA 91125 USA
[7] Alan Turing Inst, London NW1 2DB, England
[8] Imperial Coll London, Dept Math, London SW7 2AZ, England
[9] Gulf Univ Sci & Technol GUST, Dept Math, Mubarak Al Abdullah 32093, Kuwait
关键词
artificial intelligence; deep learning; diagnostic accuracy; medical imaging; model interpretability; pulmonary radiography; TUBERCULOSIS; CLASSIFICATION;
D O I
10.3390/jpm14080856
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Our research evaluates advanced artificial (AI) methodologies to enhance diagnostic accuracy in pulmonary radiography. Utilizing DenseNet121 and ResNet50, we analyzed 108,948 chest X-ray images from 32,717 patients and DenseNet121 achieved an area under the curve (AUC) of 94% in identifying the conditions of pneumothorax and oedema. The model's performance surpassed that of expert radiologists, though further improvements are necessary for diagnosing complex conditions such as emphysema, effusion, and hernia. Clinical validation integrating Latent Dirichlet Allocation (LDA) and Named Entity Recognition (NER) demonstrated the potential of natural language processing (NLP) in clinical workflows. The NER system achieved a precision of 92% and a recall of 88%. Sentiment analysis using DistilBERT provided a nuanced understanding of clinical notes, which is essential for refining diagnostic decisions. XGBoost and SHapley Additive exPlanations (SHAP) enhanced feature extraction and model interpretability. Local Interpretable Model-agnostic Explanations (LIME) and occlusion sensitivity analysis further enriched transparency, enabling healthcare providers to trust AI predictions. These AI techniques reduced processing times by 60% and annotation errors by 75%, setting a new benchmark for efficiency in thoracic diagnostics. The research explored the transformative potential of AI in medical imaging, advancing traditional diagnostics and accelerating medical evaluations in clinical settings.
引用
收藏
页数:52
相关论文
共 80 条
[1]   AI-based radiodiagnosis using chest X-rays: A review [J].
Akhter, Yasmeena ;
Singh, Richa ;
Vatsa, Mayank .
FRONTIERS IN BIG DATA, 2023, 6
[2]  
Armato S.G., 2019, Radiology, V290, P105, DOI [10.1007/s40134-019-0333-9, DOI 10.1007/S40134-019-0333-9]
[3]   Comparison of Deep Learning Approaches for Multi-Label Chest X-Ray Classification [J].
Baltruschat, Ivo M. ;
Nickisch, Hannes ;
Grass, Michael ;
Knopp, Tobias ;
Saalbach, Axel .
SCIENTIFIC REPORTS, 2019, 9 (1)
[4]   Using AI to Improve Radiologist Performance in Detection of Abnormalities on Chest Radiographs [J].
Bennani, Souhail ;
Regnard, Nor-Eddine ;
Ventre, Jeanne ;
Lassalle, Louis ;
Nguyen, Toan ;
Ducarouge, Alexis ;
Dargent, Lucas ;
Guillo, Enora ;
Gouhier, Elodie ;
Zaimi, Sophie-Helene ;
Canniff, Emma ;
Malandrin, Cecile ;
Khafagy, Philippe ;
Chassagnon, Guillaume ;
Koulakian, Hasmik ;
Revel, Marie-Pierre .
RADIOLOGY, 2023, 309 (03)
[5]  
Bharati Subrato, 2020, Inform Med Unlocked, V20, P100391, DOI 10.1016/j.imu.2020.100391
[6]   Towards AI-augmented radiology education: a web-based application for perception training in chest X-ray nodule detection [J].
Borgbjerg, Jens ;
Thompson, John D. ;
Salte, Ivar Mjoland ;
Frokjaer, Jens Brondum .
BRITISH JOURNAL OF RADIOLOGY, 2023, 96 (1152)
[7]   Beyond multidrug resistance: Leveraging rare variants with machine and statistical learning models in Mycobacterium tuberculosis resistance prediction [J].
Chen, Michael L. ;
Doddi, Akshith ;
Royer, Jimmy ;
Freschi, Luca ;
Schito, Marco ;
Ezewudo, Matthew ;
Kohane, Isaac S. ;
Beam, Andrew ;
Farhat, Maha .
EBIOMEDICINE, 2019, 43 :356-369
[8]   Independent evaluation of 12 artificial intelligence solutions for the detection of tuberculosis [J].
Codlin, Andrew J. ;
Thang Phuoc Dao ;
Luan Nguyen Quang Vo ;
Forse, Rachel J. ;
Vinh Van Truong ;
Ha Minh Dang ;
Lan Huu Nguyen ;
Hoa Binh Nguyen ;
Nhung Viet Nguyen ;
Sidney-Annerstedt, Kristi ;
Squire, Bertie ;
Lonnroth, Knut ;
Caws, Maxine .
SCIENTIFIC REPORTS, 2021, 11 (01)
[9]   Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data [J].
Deelder, Wouter ;
Christakoudi, Sofia ;
Phelan, Jody ;
Benavente, Ernest Diez ;
Campino, Susana ;
McNerney, Ruth ;
Palla, Luigi ;
Clark, Taane G. .
FRONTIERS IN GENETICS, 2019, 10
[10]  
Divya L., 2023, P 2023 IEEE PUN SECT, P1, DOI [10.1109/PuneCon58714.2023.10450111, DOI 10.1109/PUNECON58714.2023.10450111]