On the isomorphism problem for central extensions II

被引:0
作者
Snanou, Noureddine [1 ]
机构
[1] Sidi Mohamed Ben Abdellah Univ, Fac Sci Dhar El Mahraz, Dept Math, Fes, Morocco
来源
EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2024年 / 17卷 / 02期
关键词
Central extension; Isomorphism problem; Lower isomorphic; Upper isomorphic; (G)-isomorphic;
D O I
10.29020/nybg.ejpam.v17i2.5118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the isomorphism problem for central extensions. More precisely, in some new situations, we provide necessary and sufficient conditions for two central extensions to be isomorphic. We investigate the case when the quotient group is simple or purely nonab elian. Furthermore, we characterize isomorphisms leaving the quotient group invariant. Finally, we deal with isomorphisms of central extensions where the kernel group and the quotient group are isomorphic.
引用
收藏
页码:956 / 968
页数:13
相关论文
共 12 条
  • [1] Brown K.S., 1982, Cohomology of Groups, V87, DOI [10.1007/978-1-4684-9327-6, DOI 10.1007/978-1-4684-9327-6]
  • [2] Dummit D. S., 2004, Abstract Algebra
  • [3] Group extensions and homology
    Eilenberg, S
    MacLane, S
    [J]. ANNALS OF MATHEMATICS, 1942, 43 : 757 - 831
  • [4] COHOMOLOGY THEORY IN ABSTRACT GROUPS .1.
    EILENBERG, S
    MACLANE, S
    [J]. ANNALS OF MATHEMATICS, 1947, 48 (01) : 51 - 78
  • [5] MacLane S., 1963, Grundlehren Math. Wiss., V114
  • [6] Rotman Joseph J., 1995, An introduction to the theory of groups, V148, DOI DOI 10.1007/978-1-4612-4176-8
  • [7] Schreier O., 1926, MONATSHEFTE MATH PHY, V34, P165
  • [8] Snanou Noureddine, 2024, [Proceedings of the Jangjeon Mathematical Society, Proceedings of the Jangjeon Mathematical Society(장전수학회 논문집)], V27, P101
  • [9] On the isomorphism problem for split extensions
    Snanou, Noureddine
    Charkani, Mohammed E.
    [J]. JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2024, 23 (02)
  • [10] On non-split abelian extensions II
    Snanou, Noureddine
    [J]. ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2021, 14 (09)