Parameter identification method of a reaction-diffusion network information propagation system based on optimization theory

被引:2
作者
Ding, Yi [1 ]
Zhu, Linhe [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Reaction-diffusion system; Information propagation; Turing bifurcation; Parameter identification; Optimal control; OPTIMAL-CONTROL STRATEGIES; PATTERN; DELAY; MODEL;
D O I
10.1016/j.jpdc.2024.104888
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
With the development of the times, rumors spread rapidly on the Internet. Firstly, this paper establishes a reaction-diffusion system with Allee effect to describe the rumor spreading process and derives the necessary conditions for the emergence of Turing bifurcation. Next, a parameter identification approach utilizing optimal control theory is shown. Ultimately, the impact of the magnitude of the certain parameters in the objective function on parameter identification is examined through numerous parameter identifications in continuous space and various complex networks. Additionally, the convergence rates and error magnitudes of different algorithms for parameter identification are studied across different spatial structures.
引用
收藏
页数:14
相关论文
共 41 条
[1]  
[Anonymous], 1994, MATH METHODS OPTIMIZ
[2]   An optimal control problem for a pest, predator, and plant system [J].
Apreutesei, N. C. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) :1391-1400
[4]   2-POINT STEP SIZE GRADIENT METHODS [J].
BARZILAI, J ;
BORWEIN, JM .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (01) :141-148
[5]   The neural origins of shell structure and pattern in aquatic mollusks [J].
Boettiger, Alistair ;
Ermentrout, Bard ;
Oster, George .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (16) :6837-6842
[6]  
Broyden C. G., 1970, Journal of the Institute of Mathematics and Its Applications, V6, P222
[7]  
BROYDEN CG, 1965, MATH COMPUT, V19, P557
[8]   SPARSE OPTIMAL CONTROL OF PATTERN FORMATIONS FOR AN SIR REACTION-DIFFUSION EPIDEMIC MODEL [J].
Chang, Lili ;
Gong, Wei ;
Jin, Zhen ;
Sun, Gui-Quan .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2022, 82 (05) :1764-1790
[9]   Optimal control of pattern formations for an SIR reaction-diffusion epidemic model [J].
Chang, Lili ;
Gao, Shupeng ;
Wang, Zhen .
JOURNAL OF THEORETICAL BIOLOGY, 2022, 536
[10]   Cross-diffusion-induced patterns in an SIR epidemic model on complex networks [J].
Chang, Lili ;
Duan, Moran ;
Sun, Guiquan ;
Jin, Zhen .
CHAOS, 2020, 30 (01)