Low-light image enhancement based on cell vibration energy model and lightness difference

被引:0
作者
Lei, Xiaozhou [1 ]
Fei, Zixiang [2 ]
Zhou, Wenju [1 ]
Zhou, Huiyu [3 ]
Fei, Minrui [1 ]
机构
[1] Shanghai Univ, Sch Mechatron Engn & Automat, Shanghai Key Lab Power Stn Automation Technol, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Sch Comp Engn & Sci, Shanghai 200444, Peoples R China
[3] Univ Leicester, Sch Comp & Math Sci, Leicester LE1 7RH, England
关键词
Low light; Image enhancement; Cell vibration model; HSV space; Weibull distribution; DARK;
D O I
10.1016/j.cviu.2024.104079
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Low-light image enhancement algorithms play a crucial role in revealing details obscured by darkness in images and substantially improving overall image quality. However, existing methods often suffer from issues like color or lightness distortion and possess limited scalability. In response to these challenges, we introduce a novel low- light image enhancement algorithm leveraging a cell vibration energy model and lightness difference. Initially, a new low-light image enhancement framework is proposed, building upon a comprehensive understanding and analysis of the cell vibration energy model and its statistical properties. Subsequently, to achieve pixel-level multi-lightness difference adjustment and exert control over the lightness level of each pixel independently, a lightness difference adjustment strategy is introduced utilizing Weibull distribution and linear mapping. Furthermore, to expand the adaptive range of the algorithm, we consider the disparities between HSV space and RGB space. Two enhanced image output modes are designed, accompanied by a thorough analysis and deduction of the relevant image layer mapping formulas. Finally, to enhance the reliability of experimental results, certain image faults in the SICE database are rectified using the feature matching method. Experimental results showcase the superiority of the proposed algorithm over twelve state-of-the-art algorithms. The resource code of this article will be released at https://github.com/leixiaozhou/CDEGmethod.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Structure-Based Low-Rank Retinex Model for Low-Light Image Enhancement
    Wang, Liqian
    Ge, Qi
    Shao, Wenze
    Wu, Pengfei
    Deng, Haisong
    TWELFTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2020), 2021, 11720
  • [22] Inception-Based CNN for Low-Light Image Enhancement
    Panwar, Moomal
    Gaur, Sanjay B. C.
    COMPUTATIONAL VISION AND BIO-INSPIRED COMPUTING ( ICCVBIC 2021), 2022, 1420 : 533 - 545
  • [23] Retinex-Based Variational Framework for Low-Light Image Enhancement and Denoising
    Ma, Qianting
    Wang, Yang
    Zeng, Tieyong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 5580 - 5588
  • [24] A simple illumination map estimation based on Retinex model for low-light image enhancement
    Tang, Shiqiang
    Li, Changli
    Pan, Xinxin
    2021 14TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, BIOMEDICAL ENGINEERING AND INFORMATICS (CISP-BMEI 2021), 2021,
  • [25] Low-Light Image Enhancement Based on Nonsubsampled Shearlet Transform
    Wang, Manli
    Tian, Zijian
    Gui, Weifeng
    Zhang, Xiangyang
    Wang, Wenqing
    IEEE ACCESS, 2020, 8 : 63162 - 63174
  • [26] Low-Light Image Enhancement Using Variational Optimization-based Retinex Model
    Park, Seonhee
    Yu, Soohwan
    Moon, Byeongho
    Ko, Seungyong
    Paik, Joonki
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2017, 63 (02) : 178 - 184
  • [27] Low-Light Image Enhancement With SAM-Based Structure Priors and Guidance
    Li, Guanlin
    Zhao, Bin
    Li, Xuelong
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10854 - 10866
  • [28] A survey on image enhancement for Low-light images
    Guo, Jiawei
    Ma, Jieming
    Garcia-Fernandez, Angel F.
    Zhang, Yungang
    Liang, Haining
    HELIYON, 2023, 9 (04)
  • [29] Fractional-Order Fusion Model for Low-Light Image Enhancement
    Dai, Qiang
    Pu, Yi-Fei
    Rahman, Ziaur
    Aamir, Muhammad
    SYMMETRY-BASEL, 2019, 11 (04):
  • [30] Low-light Image Enhancement via Extend Atmospheric Scattering Model
    Wang Manli
    Chen Bingbing
    Zhang Changsen
    ACTA PHOTONICA SINICA, 2023, 52 (06)