Machine-Learning-Assisted Design of a Robust Biomimetic Radiative Cooling Metamaterial

被引:11
|
作者
Ding, Zhenmin [1 ]
Li, Xin [1 ]
Ji, Qingxiang [2 ]
Zhang, Yunce [2 ]
Li, Honglin [1 ]
Zhang, Hulin [2 ]
Pattelli, Lorenzo [4 ]
Li, Yao [2 ,3 ]
Xu, Hongbo [1 ]
Zhao, Jiupeng [1 ]
机构
[1] Harbin Inst Technol, Sch Chem & Chem Engn, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150001, Peoples R China
[3] Suzhou Lab, Suzhou 215123, Peoples R China
[4] INRIM Ist Nazl Ric Metrol, I-10135 Turin, Italy
来源
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
47;
D O I
10.1021/acsmaterialslett.4c00337
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Recently, biomimetic photonic structural materials have significantly improved their radiative cooling performance. However, most research has focused on understanding cooling mechanisms, with limited exploration of sensitive parameter variations. Traditional numerical methods are costly and time-consuming and often struggle to identify optimal solutions, limiting the scope of high-performance microstructure design. To address these challenges, we integrated machine learning into the design of Batocera LineolataHope bionic photonic structures, using SiO2 as the substrate. Deep learning models provided insights into the complex relationship between bionic metamaterials and their spectral response, enabling us to identify the optimal performance parameter range for truncated cone arrays (height-to-diameter ratio (H/D-bottom) from 0.8 to 2.4), achieving a high average emissivity of 0.985. Experimentally, the noon temperature of fabricated samples decreased by about 8.3 degrees C. This data-driven approach accelerates the design and optimization of robust biomimetic radiative cooling metamaterials, promising significant advancements in standardized passive radiative cooling applications.
引用
收藏
页码:2416 / 2424
页数:9
相关论文
共 50 条
  • [31] Machine-learning-assisted low dielectric constant polymer discovery†
    Liang, Jiechun
    Xu, Shangqian
    Hu, Linfeng
    Zhao, Yu
    Zhu, Xi
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (10) : 3823 - 3829
  • [32] Machine-learning-assisted discovery of polymers with high thermal conductivity using a molecular design algorithm
    Stephen Wu
    Yukiko Kondo
    Masa-aki Kakimoto
    Bin Yang
    Hironao Yamada
    Isao Kuwajima
    Guillaume Lambard
    Kenta Hongo
    Yibin Xu
    Junichiro Shiomi
    Christoph Schick
    Junko Morikawa
    Ryo Yoshida
    npj Computational Materials, 5
  • [33] Machine-Learning-Assisted Design of Deep Eutectic Solvents Based on Uncovered Hydrogen Bond Patterns
    Abbas, Usman L.
    Zhang, Yuxuan
    Tapia, Joseph
    Md, Selim
    Chen, Jin
    Shi, Jian
    Shao, Qing
    ENGINEERING, 2024, 39 : 74 - 83
  • [34] Machine-learning-assisted Bacteria Identification in AC Nanopore Measurement
    Sakamoto, Maami
    Hori, Kosuke
    Yamamoto, Takatoki
    SENSORS AND MATERIALS, 2023, 35 (09) : 3161 - 3171
  • [35] Machine-Learning-Assisted Construction of Ternary Convex Hull Diagrams
    Rossignol, Hugo
    Minotakis, Michail
    Cobelli, Matteo
    Sanvito, Stefano
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (06) : 1828 - 1840
  • [36] Machine-Learning-Assisted Manipulation and Readout of Molecular Spin Qubits
    Bonizzoni, Claudio
    Tincani, Mirco
    Santanni, Fabio
    Affronte, Marco
    PHYSICAL REVIEW APPLIED, 2022, 18 (06)
  • [37] Machine-Learning-Assisted Many-Body Entanglement Measurement
    Gray, Johnnie
    Banchi, Leonardo
    Bayat, Abolfazl
    Bose, Sougato
    PHYSICAL REVIEW LETTERS, 2018, 121 (15)
  • [38] On the explainability of machine-learning-assisted turbulence modeling for transonic flows
    He, Xiao
    Tan, Jianheng
    Rigas, Georgios
    Vahdati, Mehdi
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2022, 97
  • [39] Machine-learning-assisted materials discovery using failed experiments
    Raccuglia, Paul
    Elbert, Katherine C.
    Adler, Philip D. F.
    Falk, Casey
    Wenny, Malia B.
    Mollo, Aurelio
    Zeller, Matthias
    Friedler, Sorelle A.
    Schrier, Joshua
    Norquist, Alexander J.
    NATURE, 2016, 533 (7601) : 73 - +
  • [40] Machine-Learning-Assisted Intelligent Imaging Flow Cytometry: A Review
    Luo, Shaobo
    Shi, Yuzhi
    Chin, Lip Ket
    Hutchinson, Paul Edward
    Zhang, Yi
    Chierchia, Giovanni
    Talbot, Hugues
    Jiang, Xudong
    Bourouina, Tarik
    Liu, Ai-Qun
    ADVANCED INTELLIGENT SYSTEMS, 2021, 3 (11)