Pervasive Computing in Healthcare

被引:0
作者
Tsanas , Athanasios [1 ]
Triantafyllidis, Andreas [2 ]
Tsiknakis, Manolis [3 ]
机构
[1] Univ Edinburgh, Usher Inst, Edinburgh Med Sch, Edinburgh EH16 4UX, Scotland
[2] Ctr Res & Technol Hellas CERTH, GR-57001 Thessaloniki, Greece
[3] Hellen Mediterranean Univ, Dept Elect & Comp Engn, Iraklion 71410, Greece
关键词
Special issues and sections; Medical services; Pervasive computing; Computer applications; Data collection; Information analysis; Wearable sensors; Machine learning; Smart phones; Patient monitoring; DIGITAL HEALTH;
D O I
10.1109/JBHI.2024.3384718
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pervasive computing has revolutionized how we collect data and interact with information. Research interest in pervasive computing has been growing exponentially over the years, demonstrating enormous potential in biomedical applications ranging from a research-fertile field to clinical translation and healthcare delivery [1]. The sophisticated capabilities of smartphones integrating diverse sensors along with wearable and non-wearable sensors provide the opportunity to collect longitudinal, multimodal data streams and facilitate near real-time monitoring, over and above standardized self-reports [1], [2], [3], [4]. Overall, digital technologies (e.g., smartphones and smartwatches) are becoming increasingly affordable and have already been embraced by many people including elders [2], [3], facilitating large scale investigations and clinical trials. Furthermore, ubiquitous devices such as standard telephones, for example, have been used to collect speech signals for healthcare assessments, enabling large studies (∼10000 people) within months, across multiple countries, with minimal cost [5]. Nation-wide studies reaching 100000 + people who contribute their data have become possible, such as the U.K. BioBank (https://www.ukbiobank.ac.uk/), which has enabled novel data explorations into incident cardiovascular disease at scale [6]. Many innovative solutions capitalizing on (large) data streams from different sources have been proposed, coupled with emerging advances in data science and machine learning which enable fast and advanced processing of the collected datasets [7].
引用
收藏
页码:2459 / 2460
页数:2
相关论文
共 17 条
  • [1] Smartphone Speech Testing for Symptom Assessment in Rapid Eye Movement Sleep Behavior Disorder and Parkinson's Disease
    Arora, Siddharth
    Lo, Christine
    Hu, Michele
    Tsanas, Athanasios
    [J]. IEEE ACCESS, 2021, 9 : 44813 - 44824
  • [2] Digital health for aging populations
    Chen, Chuanrui
    Ding, Shichao
    Wang, Joseph
    [J]. NATURE MEDICINE, 2023, 29 (07) : 1623 - 1630
  • [3] Evolving regulatory perspectives on digital health technologies for medicinal product development
    Colloud, Seya
    Metcalfe, Thomas
    Askin, Scott
    Belachew, Shibeshih
    Ammann, Johannes
    Bos, Ernst
    Kilchenmann, Timothy
    Strijbos, Paul
    Eggenspieler, Damien
    Servais, Laurent
    Garay, Chloe
    Konstantakopoulos, Athanasios
    Ritzhaupt, Armin
    Vetter, Thorsten
    Vincenzi, Claudia
    Cerreta, Francesca
    [J]. NPJ DIGITAL MEDICINE, 2023, 6 (01)
  • [4] Digital health technologies and machine learning augment patient reported outcomes to remotely characterise rheumatoid arthritis
    Creagh, Andrew P.
    Hamy, Valentin
    Yuan, Hang
    Mertes, Gert
    Tomlinson, Ryan
    Chen, Wen-Hung
    Williams, Rachel
    Llop, Christopher
    Yee, Christopher
    Duh, Mei Sheng
    Doherty, Aiden
    Garcia-Gancedo, Luis
    Clifton, David A.
    [J]. NPJ DIGITAL MEDICINE, 2024, 7 (01)
  • [5] Symptom tracking in endometriosis using digital technologies: Knowns, unknowns, and future prospects
    Edgley, Katherine
    Horne, Andrew W.
    Saunders, Philippa T. K.
    Tsanas, Athanasios
    [J]. CELL REPORTS MEDICINE, 2023, 4 (09)
  • [6] BAFNet: Bottleneck Attention Based Fusion Network for Sleep Apnea Detection
    Fan, Xiaomao
    Chen, Xianhui
    Ma, Wenjun
    Gao, Weidong
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (05) : 2473 - 2484
  • [7] Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends
    Gorriz, J. M.
    Avarez-Illan, I.
    Avarez-Marquina, A.
    Arco, J. E.
    Atzmueller, M.
    Ballarini, F.
    Barakova, E.
    Bologna, G.
    Bonomini, P.
    Castellanos-Dominguez, G.
    Castillo-Barnes, D.
    Cho, S. B.
    Contreras, R.
    Cuadra, J. M.
    Dominguez, E.
    Dominguez-Mateos, F.
    Duro, R. J.
    Elizondo, D.
    Fernandez-Caballero, A.
    Fernandez-Jover, E.
    Formoso, M. A.
    Gallego-Molina, N. J.
    Gamazo, J.
    Gonzalez, J. Garcia
    Garcia-Rodriguez, J.
    Garre, C.
    Garrigos, J.
    Gomez-Rodellar, A.
    Gomez-Vilda, P.
    Grana, M.
    Guerrero-Rodriguez, B.
    Hendrikse, S. C. F.
    Jimenez-Mesa, C.
    Jodra-Chuan, M.
    Julian, V.
    Kotz, G.
    Kutt, K.
    Leming, M.
    de Lope, J.
    Macas, B.
    Marrero-Aguiar, V.
    Martinez, J. J.
    Martinez-Murcia, F. J.
    Martinez-Tomas, R.
    Mekyska, J.
    Nalepa, G. J.
    Novais, P.
    Orellana, D.
    Ortiz, A.
    Palacios-Alonso, D.
    [J]. INFORMATION FUSION, 2023, 100
  • [8] MVF-SleepNet: Multi-View Fusion Network for Sleep Stage Classification
    Li, Yujie
    Chen, Jingrui
    Ma, Wenjun
    Zhao, Gansen
    Fan, Xiaomao
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2024, 28 (05) : 2485 - 2495
  • [9] Privacy in the age of medical big data
    Price, W. Nicholson
    Cohen, I. Glenn
    [J]. NATURE MEDICINE, 2019, 25 (01) : 37 - 43
  • [10] A systems approach towards remote health-monitoring in older adults: Introducing a zero-interaction digital exhaust
    Schutz, Narayan
    Knobel, Samuel E. J.
    Botros, Angela
    Single, Michael
    Pais, Bruno
    Santschi, Valerie
    Gatica-Perez, Daniel
    Buluschek, Philipp
    Urwyler, Prabitha
    Gerber, Stephan M.
    Muri, Rene M.
    Mosimann, Urs P.
    Saner, Hugo
    Nef, Tobias
    [J]. NPJ DIGITAL MEDICINE, 2022, 5 (01)