Global Well-Posedness and Convergence Results to a 3D Regularized Boussinesq System in Sobolev Spaces

被引:0
|
作者
Selmi, Ridha [1 ,2 ,3 ]
Almutairi, Shahah [1 ]
机构
[1] Northern Border Univ, Coll Sci, Dept Math, POB 1321, Ar Ar 73222, Saudi Arabia
[2] Univ Gabes, Fac Sci, Dept Math, Gabes 6072, Tunisia
[3] Univ Tunis El Manar, Fac Sci Tunis, Lab Partial Differential Equat & Applicat LR03ES04, Tunis 1068, Tunisia
关键词
EQUATION;
D O I
10.1155/2024/4495266
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a regularized periodic three-dimensional Boussinesq system. For a mean free initial temperature, we use the coupling between the velocity and temperature to close the energy estimates independently of time. This allows proving the existence of a global in time unique weak solution. Also, we establish that this solution depends continuously on the initial data. Moreover, we prove that this solution converges to a Leray-Hopf weak solution of the three-dimensional Boussinesq system as the regularizing parameter vanishes.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] WELL-POSEDNESS AND ILL-POSEDNESS RESULTS FOR THE REGULARIZED BENJAMIN-ONO EQUATION IN WEIGHTED SOBOLEV SPACES
    Fonseca, G.
    Rodriguez-Blanco, G.
    Sandoval, W.
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (04) : 1327 - 1341
  • [22] Global well-posedness for the 3D rotating Boussinesq equations in variable exponent Fourier-Besov spaces
    Sun, Xiaochun
    Wu, Yulian
    Xu, Gaoting
    AIMS MATHEMATICS, 2023, 8 (11): : 27065 - 27079
  • [23] ON THE GLOBAL WELL-POSEDNESS OF THE AXISYMMETRIC VISCOUS BOUSSINESQ SYSTEM IN CRITICAL LEBESGUE SPACES
    Hanachi, Adalet
    Houamed, Haroune
    Zerguine, Mohamed
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2020, 40 (11) : 6473 - 6506
  • [24] Global well-posedness for 3D generalized Navier-Stokes-Boussinesq equations
    Quan-sen Jiu
    Huan Yu
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 1 - 16
  • [25] Global Well-posedness for 3D Generalized Navier-Stokes-Boussinesq Equations
    Jiu, Quan-sen
    Yu, Huan
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (01): : 1 - 16
  • [26] Global Well-Posedness and Asymptotic Behavior of the 3D MHD-Boussinesq Equations
    Zhengguang Guo
    Zunzun Zhang
    Zdenĕk Skalák
    Journal of Nonlinear Science, 2023, 33
  • [27] Global Well-Posedness and Asymptotic Behavior of the 3D MHD-Boussinesq Equations
    Guo, Zhengguang
    Zhang, Zunzun
    Skalak, Zdenek
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (04)
  • [28] Global Well-posedness for 3D Generalized Navier-Stokes-Boussinesq Equations
    Quan-sen JIU
    Huan YU
    Acta Mathematicae Applicatae Sinica, 2016, 32 (01) : 1 - 16
  • [29] Global well-posedness for KdV in Sobolev spaces of negative index
    Colliander, J.
    Keel, M.
    Staffilani, G.
    Takaoka, H.
    Tao, T.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2001,
  • [30] On the Global Well-posedness of the Boussinesq System with Zero Viscosity
    Hmidi, Taoufik
    Keraani, Sahbi
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2009, 58 (04) : 1591 - 1618