Global Cauchy problem for the complex NLKG and sinh-Gordon equations in super-critical spaces

被引:1
作者
Wang, Baoxiang [1 ]
机构
[1] Jimei Univ, Sch Sci, Xiamen 361021, Peoples R China
关键词
NLKG; Sinh-Gordon; Global solution; Very rough function spaces; NONLINEAR KLEIN-GORDON; DEFINED SCATTERING OPERATORS; ENERGY SCATTERING; WAVE-EQUATION; TIME MEANS; REGULARITY; THRESHOLD; BEHAVIOR; DECAY; NLS;
D O I
10.1016/j.jfa.2024.110458
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By introducing a class of new function spaces B-p,q(sigma,s) as the resolution spaces, we study the Cauchy problem for the nonlinear Klein-Gordon (NLKG) and sinh-Gordon equations in all spatial dimensions d >= 1, partial derivative(2)(t)u+u-Delta u+f(u) = 0, (u, partial derivative(t) u)t_0 = (u(0), u(1)), where f(u) = (u1+ alpha) or f(u) =sinh u - u. We consider the initial data (u(o), u(1)) in supercritical function spaces E-sigma,E-s x E sigma-1s, for which their norms are defined by parallel to f parallel to(E sigma,s) = parallel to <xi >(sigma) 2s vertical bar vertical bar f()parallel to(L2), s < 0, sigma is an element of R. Any Sobolev space H-kappa can be embedded into E-sigma,E-s i.e., H-kappa subset of E-sigma,E-s for any kappa, sigma is an element of R and s < 0. We show the global existence and uniqueness of the solutions of NLKG if the initial data belong to some E-sigma,E-s x E-sigma-1,E-s (s < 0, sigma >= max(d/2-2/alpha, 1/2), alpha is an element of N, alpha >= 4/d) and their Fourier transforms are supported in the first octant, the smallness conditions on the initial data in E-sigma,E-s x E-sigma-1,E-s, are not required for the global solutions. Similar results hold for the sinh-Gordon equation if the spatial dimensions d >= 2. (C) 2024 Elsevier Inc, All rights reserved.
引用
收藏
页数:64
相关论文
共 65 条
[1]   NONLINEAR-EVOLUTION EQUATIONS OF PHYSICAL SIGNIFICANCE [J].
ABLOWITZ, MJ ;
KAUP, DJ ;
NEWELL, AC ;
SEGUR, H .
PHYSICAL REVIEW LETTERS, 1973, 31 (02) :125-127
[2]   Analyticity and Decay Estimates of the Navier-Stokes Equations in Critical Besov Spaces [J].
Bae, Hantaek ;
Biswas, Animikh ;
Tadmor, Eitan .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 205 (03) :963-991
[3]   High frequency approximation of solutions to critical nonlinear wave equations [J].
Bahouri, H ;
Gérard, P .
AMERICAN JOURNAL OF MATHEMATICS, 1999, 121 (01) :131-175
[4]   Dispersion estimates for fourth order Schrodinger equations [J].
Ben-Artzi, M ;
Koch, H ;
Saut, JC .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (02) :87-92
[5]  
Bergh J., 1976, Interpolation spaces. An introduction
[6]   LINEAR PARTIAL DIFFERENTIAL OPERATORS AND GENERALIZED DISTRIBUTIONS [J].
BJORCK, G .
ARKIV FOR MATEMATIK, 1966, 6 (4-5) :351-&
[7]  
Bourdaud G., 2003, ANN MAT PUR APPL, V182, P409, DOI DOI 10.1007/S10231-003-0074-4
[8]   ON SPACE-TIME MEANS AND STRONG GLOBAL-SOLUTIONS OF NONLINEAR HYPERBOLIC-EQUATIONS [J].
BRENNER, P .
MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (01) :45-55
[9]   ON SPACE-TIME MEANS AND EVERYWHERE DEFINED SCATTERING OPERATORS FOR NONLINEAR KLEIN-GORDON EQUATIONS [J].
BRENNER, P .
MATHEMATISCHE ZEITSCHRIFT, 1984, 186 (03) :383-391
[10]   ON SCATTERING AND EVERYWHERE DEFINED SCATTERING OPERATORS FOR NONLINEAR KLEIN-GORDON EQUATIONS [J].
BRENNER, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1985, 56 (03) :310-344