Characterization and experimental investigation of silicon nitride-based composite phase change materials for battery thermal management

被引:1
作者
Li, Zemin [1 ]
Liu, Jian [1 ]
Yu, Junjie [1 ]
Shan, Kun [1 ]
Zhu, Yiwei [1 ]
Zhang, Ying [1 ]
Tan, Jinshun [1 ]
Li, Junsheng [1 ]
机构
[1] Guangdong Polytech Normal Univ, Sch Automobile & Transportat Engn, Guangzhou 510665, Peoples R China
关键词
Thermal management; Composite phase -change material; Thermal stability; Pouch lithium -ion battery; Silicon nitride; LI-ION BATTERIES; ELECTRIC VEHICLE; ENERGY-STORAGE; SYSTEM; RESISTIVITY; GRAPHITE; BEHAVIOR;
D O I
10.1016/j.applthermaleng.2024.123374
中图分类号
O414.1 [热力学];
学科分类号
摘要
In this study, different mass fractions of silicon nitride (Si3N4) were added to paraffin (PA)/expanded graphite (EG) to prepare a novel composite phase change material(CPCM). Thermal and chemical characterization of the CPCMs were conducted to assess their properties. The results indicated that adding 1 wt% Si3N4 was an optimal strategy, whose leakage rate at 40 degrees C and phase change starting temperature was lower and higher than that of PA/EG, respectively. Then, the cooling performance of the Si3N4/PA/EG CPCM with 1 wt% Si3N4 (denoted as CPCM1) was compared to PA/EG CPCM (denoted as CPCM0) and air cooling with a acrylic box. CPCM1 had heat dissipation and temperature uniformity property very close to CPCM0, but could obtain lower maximum temperature (Tmax) and better temperature uniformity than the air cooling with a acrylic box. For air cooling with a acrylic box, the Tmax and the maximum temperature difference (Delta Tmax) inside the battery at a discharge rate of 2C under 35 degrees C was 49 degrees C and 3.78 degrees C, respectively. However, the Tmax and Delta Tmax for CPCM1 cooling was only 40.7 degrees C and 1.37 degrees C, respectively, which was reduced by 16.9 % and 63.7 %, respectively. Thus, we could draw a conclusion that the Si3N4/PA/EG CPCM exhibited excellent ability to control maximum temperature and maximum temperature difference for the battery.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Numerical investigation of battery thermal management by using helical fin and composite phase change material
    Dagdevir, Toygun
    Ding, Yulong
    JOURNAL OF ENERGY STORAGE, 2024, 75
  • [32] Thermal management investigation for lithium-ion battery module with different phase change materials
    Wang, Ziyuan
    Li, Xinxi
    Zhang, Guoqing
    Lv, Youfu
    Wang, Cong
    He, Fengqi
    Yang, Chengzhao
    Yang, Chuxiong
    RSC ADVANCES, 2017, 7 (68) : 42909 - 42918
  • [33] Properties of novel silicon nitride-based materials
    Itatani, Kiyoshi
    NUKLEONIKA, 2006, 51 : S55 - S60
  • [34] Fin structure and liquid cooling to enhance heat transfer of composite phase change materials in battery thermal management system
    Xiao, Jinsheng
    Zhang, Xu
    Benard, Pierre
    Yang, Tianqi
    Zeng, Juan
    Long, Xi
    ENERGY STORAGE, 2023, 5 (06)
  • [35] Preparation and thermal conductivity enhancement of composite phase change materials for electronic thermal management
    Wu, Weixiong
    Zhang, Guoqing
    Ke, Xiufang
    Yang, Xiaoqing
    Wang, Ziyuan
    Liu, Chenzhen
    ENERGY CONVERSION AND MANAGEMENT, 2015, 101 : 278 - 284
  • [36] Hybrid cooling based battery thermal management using composite phase change materials and forced convection
    El Idi, Mohamed Moussa
    Karkri, Mustapha
    Tankari, Mahamadou Abdou
    Vincent, Stephane
    JOURNAL OF ENERGY STORAGE, 2021, 41 (41):
  • [37] Experimental investigation of battery thermal management and safety with heat pipe and immersion phase change liquid
    Zhou, Haikuo
    Dai, Chaohua
    Liu, Yang
    Fu, Xueting
    Du, Yun
    JOURNAL OF POWER SOURCES, 2020, 473
  • [38] Experimental study on thermal management of lithium-ion battery with graphite powder based composite phase change materials covering the whole climatic range
    Wang, Zichen
    Du, Changqing
    Qi, Rui
    Wang, Yijin
    APPLIED THERMAL ENGINEERING, 2022, 216
  • [39] Experimental investigation of using phase change materials with multiple melting points in the arrangement of metal boxes for thermal management of photovoltaic panels
    Mohammadifar, Amir
    Rahimi, Masoud
    Azimi, Neda
    JOURNAL OF ENERGY STORAGE, 2025, 111
  • [40] Experimental study of battery passive thermal management system using copper foam-based phase change materials
    Sun Z.
    Guo Y.
    Zhang C.
    Whitehouse J.
    Zhou Q.
    Xu H.
    Wang C.
    International Journal of Thermofluids, 2023, 17