Tackling the curse of dimensionality with physics-informed neural networks

被引:22
|
作者
Hu, Zheyuan [1 ]
Shukla, Khemraj [2 ]
Karniadakis, George Em [2 ]
Kawaguchi, Kenji [1 ]
机构
[1] Natl Univ Singapore, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
[2] Brown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA
关键词
Physics-informed neural networks; Curse of dimensionality; PARTIAL-DIFFERENTIAL-EQUATIONS; DEEP LEARNING FRAMEWORK; ALGORITHMS; XPINNS;
D O I
10.1016/j.neunet.2024.106369
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The curse -of -dimensionality taxes computational resources heavily with exponentially increasing computational cost as the dimension increases. This poses great challenges in solving high -dimensional partial differential equations (PDEs), as Richard E. Bellman first pointed out over 60 years ago. While there has been some recent success in solving numerical PDEs in high dimensions, such computations are prohibitively expensive, and true scaling of general nonlinear PDEs to high dimensions has never been achieved. We develop a new method of scaling up physics -informed neural networks (PINNs) to solve arbitrary high -dimensional PDEs. The new method, called Stochastic Dimension Gradient Descent (SDGD), decomposes a gradient of PDEs' and PINNs' residual into pieces corresponding to different dimensions and randomly samples a subset of these dimensional pieces in each iteration of training PINNs. We prove theoretically the convergence and other desired properties of the proposed method. We demonstrate in various diverse tests that the proposed method can solve many notoriously hard high -dimensional PDEs, including the Hamilton-Jacobi-Bellman (HJB) and the Schr & ouml;dinger equations in tens of thousands of dimensions very fast on a single GPU using the PINNs mesh -free approach. Notably, we solve nonlinear PDEs with nontrivial, anisotropic, and inseparable solutions in less than one hour for 1000 dimensions and in 12 h for 100,000 dimensions on a single GPU using SDGD with PINNs. Since SDGD is a general training methodology of PINNs, it can be applied to any current and future variants of PINNs to scale them up for arbitrary high -dimensional PDEs.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Δ-PINNs: Physics-informed neural networks on complex geometries
    Costabal, Francisco Sahli
    Pezzuto, Simone
    Perdikaris, Paris
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 127
  • [32] Stiff-PDEs and Physics-Informed Neural Networks
    Sharma, Prakhar
    Evans, Llion
    Tindall, Michelle
    Nithiarasu, Perumal
    ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2023, 30 (05) : 2929 - 2958
  • [33] Self-adaptive physics-informed neural networks
    McClenny, Levi D.
    Braga-Neto, Ulisses M.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 474
  • [34] Respecting causality for training physics-informed neural networks
    Wang, Sifan
    Sankaran, Shyam
    Perdikaris, Paris
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 421
  • [35] Loss-attentional physics-informed neural networks
    Song, Yanjie
    Wang, He
    Yang, He
    Taccari, Maria Luisa
    Chen, Xiaohui
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 501
  • [36] iPINNs: incremental learning for Physics-informed neural networks
    Dekhovich, Aleksandr
    Sluiter, Marcel H. F.
    Tax, David M. J.
    Bessa, Miguel A.
    ENGINEERING WITH COMPUTERS, 2025, 41 (01) : 389 - 402
  • [37] Sensitivity analysis using Physics-informed neural networks
    Hanna, John M.
    Aguado, Jose, V
    Comas-Cardona, Sebastien
    Askri, Ramzi
    Borzacchiello, Domenico
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 135
  • [38] Physics-Informed Neural Networks for Inverse Electromagnetic Problems
    Baldan, Marco
    Di Barba, Paolo
    Lowther, David A.
    IEEE TRANSACTIONS ON MAGNETICS, 2023, 59 (05)
  • [39] Physics-informed neural networks for spherical indentation problems
    Marimuthu, Karuppasamy Pandian
    Lee, Hyungyil
    MATERIALS & DESIGN, 2023, 236
  • [40] Stiff-PDEs and Physics-Informed Neural Networks
    Prakhar Sharma
    Llion Evans
    Michelle Tindall
    Perumal Nithiarasu
    Archives of Computational Methods in Engineering, 2023, 30 (5) : 2929 - 2958