Tackling the curse of dimensionality with physics-informed neural networks

被引:23
|
作者
Hu, Zheyuan [1 ]
Shukla, Khemraj [2 ]
Karniadakis, George Em [2 ]
Kawaguchi, Kenji [1 ]
机构
[1] Natl Univ Singapore, 21 Lower Kent Ridge Rd, Singapore 119077, Singapore
[2] Brown Univ, Div Appl Math, 182 George St, Providence, RI 02912 USA
关键词
Physics-informed neural networks; Curse of dimensionality; PARTIAL-DIFFERENTIAL-EQUATIONS; DEEP LEARNING FRAMEWORK; ALGORITHMS; XPINNS;
D O I
10.1016/j.neunet.2024.106369
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The curse -of -dimensionality taxes computational resources heavily with exponentially increasing computational cost as the dimension increases. This poses great challenges in solving high -dimensional partial differential equations (PDEs), as Richard E. Bellman first pointed out over 60 years ago. While there has been some recent success in solving numerical PDEs in high dimensions, such computations are prohibitively expensive, and true scaling of general nonlinear PDEs to high dimensions has never been achieved. We develop a new method of scaling up physics -informed neural networks (PINNs) to solve arbitrary high -dimensional PDEs. The new method, called Stochastic Dimension Gradient Descent (SDGD), decomposes a gradient of PDEs' and PINNs' residual into pieces corresponding to different dimensions and randomly samples a subset of these dimensional pieces in each iteration of training PINNs. We prove theoretically the convergence and other desired properties of the proposed method. We demonstrate in various diverse tests that the proposed method can solve many notoriously hard high -dimensional PDEs, including the Hamilton-Jacobi-Bellman (HJB) and the Schr & ouml;dinger equations in tens of thousands of dimensions very fast on a single GPU using the PINNs mesh -free approach. Notably, we solve nonlinear PDEs with nontrivial, anisotropic, and inseparable solutions in less than one hour for 1000 dimensions and in 12 h for 100,000 dimensions on a single GPU using SDGD with PINNs. Since SDGD is a general training methodology of PINNs, it can be applied to any current and future variants of PINNs to scale them up for arbitrary high -dimensional PDEs.
引用
收藏
页数:21
相关论文
共 50 条
  • [11] Physics-informed neural networks for heterogeneous poroelastic media
    Roy, Sumanta
    Annavarapu, Chandrasekhar
    Roy, Pratanu
    Valiveti, Dakshina M.
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2025, 26 (02) : 187 - 207
  • [12] Self-adaptive loss balanced Physics-informed neural networks
    Xiang, Zixue
    Peng, Wei
    Liu, Xu
    Yao, Wen
    NEUROCOMPUTING, 2022, 496 : 11 - 34
  • [13] Enhanced physics-informed neural networks for hyperelasticity
    Abueidda, Diab W.
    Koric, Seid
    Guleryuz, Erman
    Sobh, Nahil A.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2023, 124 (07) : 1585 - 1601
  • [14] Physics-informed neural networks for diffraction tomography
    Saba, Amirhossein
    Gigli, Carlo
    Ayoub, Ahmed B.
    Psaltis, Demetri
    ADVANCED PHOTONICS, 2022, 4 (06):
  • [15] Physics-informed neural networks for periodic flows
    Shah, Smruti
    Anand, N. K.
    PHYSICS OF FLUIDS, 2024, 36 (07)
  • [16] Learning Specialized Activation Functions for Physics-Informed Neural Networks
    Wang, Honghui
    Lu, Lu
    Song, Shiji
    Huang, Gao
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2023, 34 (04) : 869 - 906
  • [17] Improved Training of Physics-Informed Neural Networks with Model Ensembles
    Haitsiukevich, Katsiaryna
    Ilin, Alexander
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [18] Thermodynamically consistent physics-informed neural networks for hyperbolic systems
    Patel, Ravi G.
    Manickam, Indu
    Trask, Nathaniel A.
    Wood, Mitchell A.
    Lee, Myoungkyu
    Tomas, Ignacio
    Cyr, Eric C.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 449
  • [19] Gradient-enhanced physics-informed neural networks for forward and inverse PDE
    Yu, Jeremy
    Lu, Lu
    Meng, Xuhui
    Karniadakis, George Em
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 393
  • [20] Parallel Physics-Informed Neural Networks with Bidirectional Balance
    Huang, Yuhao
    Xu, Jiarong
    Fang, Shaomei
    Zhu, Zupeng
    Jiang, Linfeng
    Liang, Xiaoxin
    6TH INTERNATIONAL CONFERENCE ON INNOVATION IN ARTIFICIAL INTELLIGENCE, ICIAI2022, 2022, : 23 - 30