Wake measurement of wind turbine under yawed conditions using UAV anemometry system

被引:0
|
作者
Bao, Terigen [1 ,2 ]
Li, Zhengnong [1 ,2 ]
Li, Yafei [3 ]
Pan, Yueyue [4 ]
Chan, Ricky W. K. [5 ]
Pu, Ou [1 ,6 ,7 ]
Huang, Bin [1 ,8 ]
Yan, Kai [1 ,2 ]
Peng, Binglong [1 ,2 ]
Wu, Honghua [1 ,2 ]
机构
[1] Hunan Univ, Key Lab Bldg Safety & Energy Efficiency, Minist Educ, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Coll Civil Engn, Changsha 410082, Hunan, Peoples R China
[3] Goldwind Sci & Technol Co Ltd, Beijing 100176, Peoples R China
[4] Weifang Univ, Coll Architectural Engn, Weifang 261061, Peoples R China
[5] RMIT Univ, Sch Engn, GPO Box 2476, Melbourne, Vic 3001, Australia
[6] Power Grid Planning Res Ctr Guangxi Power Grid Co, Nanning 530000, Guangxi, Peoples R China
[7] Postdoctoral Res Workstat Guangxi Power Grid Co Lt, Nanning 530000, Guangxi, Peoples R China
[8] Hainan Univ, Coll Civil Engn & Architecture, Haikou 570228, Hainan, Peoples R China
基金
中国国家自然科学基金; 海南省自然科学基金;
关键词
UAV anemometry system; Field experiments; Yawed wind turbine; Wake model; HORIZONTAL-AXIS WIND; LARGE-EDDY SIMULATION; MODEL; TUNNEL; LIDAR;
D O I
10.1016/j.jweia.2024.105720
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study employs a UAV anemometry system to assess the wind field around a yawed wind turbine, particularly focusing on its wake during operational conditions. The research findings reveal that the evolution of wind turbine wakes follows distinct patterns at various downstream distances. Turbulence intensity notably amplifies within regions characterized by significant fluctuations in mean wind speed. Specifically, in yawed conditions, the areas with the highest turbulence generated by the rotor coincide with zones exhibiting pronounced variations in mean wind speed. The heightened turbulence within the wake region to some extent constrains the safety and economic viability of wind farms. Turbulence intensity increases significantly in the region where the average wind speed changes greatly, that is, under the yaw state of the wind turbine, this region is characterized with the strongest turbulence generated by the rotor. The UAV anemometry system's wind speed assessment closely matches predictions from the Y-3DJGF model, accounting for wake experience coefficient adjustments. Furthermore, in yaw conditions, the wind turbine's wake trajectory exhibits some deviation from the incident flow's direction, with an initial increase in slope followed by gradual stabilization. As the downstream distance increases, the trajectory will eventually establish a consistent trend with the incident flow. The cost-effective and flexible UAV anemometry system enhances wind field measurements, offering an innovative approach for wind energy sector research and engineering.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] A study on measuring wind turbine wake based on UAV anemometry system
    Li, Zhengnong
    Pu, Ou
    Pan, Yueyue
    Huang, Bin
    Zhao, Zhefei
    Wu, Honghua
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2022, 53
  • [2] A new method for simulating multiple wind turbine wakes under yawed conditions
    Wei, Dezhi
    Zhao, Weiwen
    Wan, Decheng
    Xiao, Qing
    OCEAN ENGINEERING, 2021, 239
  • [3] Dynamic Responses and Wake Characteristics of a Floating Offshore Wind Turbine in Yawed Conditions
    Xu, Shun
    Zhao, Weiwen
    Wan, Decheng
    Zhao, Yan
    INTERNATIONAL JOURNAL OF OFFSHORE AND POLAR ENGINEERING, 2024, 34 (01) : 19 - 28
  • [4] Machine Learning-Based Approach to Wind Turbine Wake Prediction under Yawed Conditions
    Gajendran, Mohan Kumar
    Kabir, Ijaz Fazil Syed Ahmed
    Vadivelu, Sudhakar
    Ng, E. Y. K.
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (11)
  • [6] Study on Complex Wake Characteristics of Yawed Wind Turbine Using Actuator Line Method
    Wang, Tengyuan
    Zhou, Shuni
    Cai, Chang
    Wang, Xinbao
    Wang, Zekun
    Zhang, Yuning
    Shi, Kezhong
    Zhong, Xiaohui
    Li, Qingan
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2023, 11 (05)
  • [7] Development of a curled wake of a yawed wind turbine under turbulent and sheared inflow
    Hulsman, Paul
    Wosnik, Martin
    Petrovi, Vlaho
    Holling, Michael
    Kuhn, Martin
    WIND ENERGY SCIENCE, 2022, 7 (01) : 237 - 257
  • [8] Three-dimensional non-uniform full wake characteristics for yawed wind turbine with LiDAR-based experimental verification
    Zhu, Xiaoxun
    Chen, Yao
    Xu, Shinai
    Zhang, Shaohai
    Gao, Xiaoxia
    Sun, Haiying
    Wang, Yu
    Zhao, Fei
    Lv, Tiancheng
    ENERGY, 2023, 270
  • [9] Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model
    Dou, Bingzheng
    Qu, Timing
    Lei, Liping
    Zeng, Pan
    ENERGY, 2020, 209
  • [10] Large Eddy Simulation of Yawed Wind Turbine Wake Deformation
    Kim, Hyebin
    Lee, Sang
    ENERGIES, 2022, 15 (17)