共 50 条
Orbital modulation of an intensified hydrological cycle during the Paleocene-Eocene Thermal Maximum
被引:4
|作者:
Zhang, Jingyu
[1
]
Wang, Chunlian
[2
]
Teng, Xiaohua
[3
,4
]
Kemp, David B.
[5
,6
]
Wang, Zhixiang
[7
]
Yang, Hu
[8
]
Gai, Congcong
[9
]
Zhang, Yurui
[10
]
Zhong, Yi
[1
]
Jiang, Xiaodong
[11
]
Zhang, Qi
[12
]
Zhang, Weijie
[1
]
Fan, Xiaojie
[5
,6
]
Liu, Qingsong
[1
]
机构:
[1] Southern Univ Sci & Technol, Ctr Marine Magnetism CM2, Dept Ocean Sci & Engn, Shenzhen, Peoples R China
[2] Chinese Acad Geol Sci, Inst Mineral Resources, MNR Key Lab Metallogeny & Mineral Assessment, Beijing 100037, Peoples R China
[3] Zaozhuang Univ, Dept Tourism Resources & Environm, Zaozhuang 277160, Peoples R China
[4] Univ Utrecht, Dept Earth Sci, Budapestlaan 17, NL-3584 CD Utrecht, Netherlands
[5] China Univ Geosci Wuhan, Sch Earth Sci, State Key Lab Biogeol & Environm Geol, Wuhan 430074, Peoples R China
[6] China Univ Geosci Wuhan, Sch Earth Sci, Hubei Key Lab Crit Zone Evolut, Wuhan 430074, Peoples R China
[7] Chinese Acad Sci, Qinghai Inst Salt Lakes, Qinghai Prov Key Lab Geol & Environm Salt Lakes, Xining, Peoples R China
[8] Southern Marine Sci & Engn Guangdong Lab, Zhuhai, Peoples R China
[9] China Univ Geosci, Sch Ocean Sci, Beijing 100083, Peoples R China
[10] Xiamen Univ, Coll Ocean & Earth Sci, State Key Lab Marine Environm Sci, Xiamen, Peoples R China
[11] Guangdong Univ Technol, Sch Environm Sci & Engn, Guangzhou, Peoples R China
[12] China Univ Geosci, Sch Geophys & Informat Technol, Beijing 100083, Peoples R China
关键词:
Environmental magnetism;
Cyclostratigraphy;
Jianghan Basin;
Low-latitude forcing;
CARBON-ISOTOPE EXCURSION;
BIGHORN BASIN;
CLIMATE VARIABILITY;
TIBETAN PLATEAU;
RECORD;
BOUNDARY;
MAGNITUDE;
ECOSYSTEM;
PACIFIC;
DRIVEN;
D O I:
10.1016/j.epsl.2024.118693
中图分类号:
P3 [地球物理学];
P59 [地球化学];
学科分类号:
0708 ;
070902 ;
摘要:
The Paleocene-Eocene Thermal Maximum (PETM, -56 Ma) was an abrupt global warming event linked to massive carbon release into the ocean-atmosphere system. As such, it is considered a potentially useful analogue for present and future climate change. Consequently, deciphering its impact on the hydroclimate is important for predicting future changes under high p CO 2 and temperature conditions, especially in East Asia where more than a quarter of the world 's population lives. Here, we use magnetic and geochemical data obtained through a thick lacustrine record of the PETM from China to demonstrate a large-scale increase in weathering and precipitation coeval with the PETM. Moreover, we show that precipitation variations through the PETM were strongly controlled by eccentricity, precession and half-precession climate cycles. Our results show that orbital forcing of low-latitude insolation played a key role in driving hydroclimate fluctuations and multi -phase changes in precipitation during the PETM, emphasizing the sensitivity of East Asian hydroclimate to subtle changes in insolation under conditions of high temperature and p CO 2 , perhaps similar to those expected in the future.
引用
收藏
页数:12
相关论文