Rate-Distortion Theory by and for Energy-Based Models

被引:0
作者
Li, Qing [1 ]
Guyot, Cyril [1 ,2 ]
机构
[1] Western Digital Res, Milpitas, CA 95035 USA
[2] Alibaba Cloud, Sunnyvale, CA 94085 USA
关键词
Rate-distortion; Noise reduction; Distortion; Neural networks; Training; Electronics packaging; Source coding; Rate-distortion theory; energy-based models; batch denoising; Blahut-Arimoto algorithm;
D O I
10.1109/TCOMM.2024.3361531
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we examine the relationship between rate-distortion theory and energy-based models (EBMs). We demonstrate that EBMs can be used to approximate the rate-distortion approaching posterior, as in the Blahut-Arimoto (BA) algorithm, and to solve batch denoising problems using the posterior distribution learned by EBMs. Our results highlight the potential of EBMs to enhance the efficiency of rate-distortion theory analysis and vice versa.
引用
收藏
页码:4072 / 4083
页数:12
相关论文
共 47 条
[31]   Deep Learning Face Attributes in the Wild [J].
Liu, Ziwei ;
Luo, Ping ;
Wang, Xiaogang ;
Tang, Xiaoou .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :3730-3738
[32]  
Metz Luke, 2016, P INT C LEARN REPR
[33]   FILTERING RANDOM NOISE FROM DETERMINISTIC SIGNALS VIA DATA-COMPRESSION [J].
NATARAJAN, BK .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (11) :2595-2605
[34]   Estimating Divergence Functionals and the Likelihood Ratio by Convex Risk Minimization [J].
Nguyen, XuanLong ;
Wainwright, Martin J. ;
Jordan, Michael I. .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2010, 56 (11) :5847-5861
[35]  
Nowozin S, 2016, ADV NEUR IN, V29
[36]  
Paszke A, 2019, ADV NEUR IN, V32
[37]   U-Net: Convolutional Networks for Biomedical Image Segmentation [J].
Ronneberger, Olaf ;
Fischer, Philipp ;
Brox, Thomas .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 :234-241
[38]  
Sodhi P., 2022, PMLR, P234
[39]  
Song J, 2019, P INT C LEARN REPR
[40]  
Song Y., 2020, P INT C LEARN REPR