STT-RAM-Based Hierarchical in-Memory Computing

被引:0
作者
Gajaria, Dhruv [1 ]
Gomez, Kevin Antony [2 ]
Adegbija, Tosiron [1 ]
机构
[1] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85721 USA
[2] Univ Massachusetts, Dept Comp Sci, Amherst, MA 01003 USA
基金
美国国家科学基金会;
关键词
Random access memory; In-memory computing; Nonvolatile memory; Computer architecture; Resistance; Microprocessors; Magnetization; In-cache computing; in-memory computing; relaxed retention time; STT-RAM; PERFORMANCE;
D O I
10.1109/TPDS.2024.3430853
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In-memory computing promises to overcome the von Neumann bottleneck in computer systems by performing computations directly within the memory. Previous research has suggested using Spin-Transfer Torque RAM (STT-RAM) for in-memory computing due to its non-volatility, low leakage power, high density, endurance, and commercial viability. This paper explores hierarchical in-memory computing, where different levels of the memory hierarchy are augmented with processing elements to optimize workload execution. The paper investigates processing in memory (PiM) using non-volatile STT-RAM and processing in cache (PiC) using volatile STT-RAM with relaxed retention, which helps mitigate STT-RAM's write latency and energy overheads. We analyze tradeoffs and overheads associated with data movement for PiC versus write overheads for PiM using STT-RAMs for various workloads. We examine workload characteristics, such as computational intensity and CPU-dependent workloads with limited instruction-level parallelism, and their impact on PiC/PiM tradeoffs. Using these workloads, we evaluate computing in STT-RAM versus SRAM at different cache hierarchy levels and explore the potential of heterogeneous STT-RAM cache architectures with various retention times for PiC and CPU-based computing. Our experiments reveal significant advantages of STT-RAM-based PiC over PiM for specific workloads. Finally, we describe open research problems in hierarchical in-memory computing architectures to further enhance this paradigm.
引用
收藏
页码:1615 / 1629
页数:15
相关论文
共 33 条
[1]   Compute Caches [J].
Aga, Shaizeen ;
Jeloka, Supreet ;
Subramaniyan, Arun ;
Narayanasamy, Satish ;
Blaauw, David ;
Das, Reetuparna .
2017 23RD IEEE INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTER ARCHITECTURE (HPCA), 2017, :481-492
[2]   Circuits and Architectures for In-Memory Computing-Based Machine Learning Accelerators [J].
Ankit, Aayush ;
Chakraborty, Indranil ;
Agrawal, Amogh ;
Ali, Mustafa ;
Roy, Kaushik .
IEEE MICRO, 2020, 40 (06) :8-21
[3]  
Binkert Nathan, 2011, Computer Architecture News, V39, P1, DOI 10.1145/2024716.2024718
[4]  
Boroumand A, 2018, ACM SIGPLAN NOTICES, V53, P316, DOI [10.1145/3173162.3173177, 10.1145/3296957.3173177]
[5]   Advances and Future Prospects of Spin-Transfer Torque Random Access Memory [J].
Chen, E. ;
Apalkov, D. ;
Diao, Z. ;
Driskill-Smith, A. ;
Druist, D. ;
Lottis, D. ;
Nikitin, V. ;
Tang, X. ;
Watts, S. ;
Wang, S. ;
Wolf, S. A. ;
Ghosh, A. W. ;
Lu, J. W. ;
Poon, S. J. ;
Stan, M. ;
Butler, W. H. ;
Gupta, S. ;
Mewes, C. K. A. ;
Mewes, Tim ;
Visscher, P. B. .
IEEE TRANSACTIONS ON MAGNETICS, 2010, 46 (06) :1873-1878
[6]   A Scaling Roadmap and Performance Evaluation of In-Plane and Perpendicular MTJ Based STT-MRAMs for High-Density Cache Memory [J].
Chun, Ki Chul ;
Zhao, Hui ;
Harms, Jonathan D. ;
Kim, Tae-Hyoung ;
Wang, Jian-Ping ;
Kim, Chris H. .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2013, 48 (02) :598-610
[7]   Blurring the Lines between Memory and Computation [J].
Das, Reetuparna .
IEEE MICRO, 2017, 37 (06) :13-15
[8]  
Deliang Fan, 2017, 2017 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). Proceedings, P683, DOI 10.1109/ISVLSI.2017.116
[9]   NVSim: A Circuit-Level Performance, Energy, and Area Model for Emerging Nonvolatile Memory [J].
Dong, Xiangyu ;
Xu, Cong ;
Xie, Yuan ;
Jouppi, Norman P. .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2012, 31 (07) :994-1007
[10]   IMPLEMENTING LINEAR ALGEBRA ALGORITHMS FOR DENSE MATRICES ON A VECTOR PIPELINE MACHINE [J].
DONGARRA, JJ ;
GUSTAVSON, FG ;
KARP, A .
SIAM REVIEW, 1984, 26 (01) :91-112