Gastric Cancer Assembloids Derived from Patient-Derived Xenografts: A Preclinical Model for Therapeutic Drug Screening

被引:1
作者
Xu, Xinxin [1 ,2 ,3 ]
Gao, Yunhe [3 ]
Dai, Jianli [4 ]
Wang, Qianqian [4 ]
Wang, Zixuan [1 ]
Liang, Wenquan [3 ]
Zhang, Qing [4 ]
Ma, Wenbo [4 ]
Liu, Zibo [1 ]
Luo, Hao [1 ]
Qiao, Zhi [3 ]
Li, Li [2 ,3 ]
Wang, Zijian [2 ,3 ]
Chen, Lin [3 ]
Zhang, Yanmei [1 ,4 ]
Xiong, Zhuo [1 ]
机构
[1] Tsinghua Univ, Biomfg Ctr, Dept Mech Engn, Beijing 100084, Peoples R China
[2] Med Sch Chinese PLA, Beijing 100853, Peoples R China
[3] Chinese Peoples Liberat Army Gen Hosp, Med Ctr 1, Senior Dept Gen Surg, Beijing 100853, Peoples R China
[4] Beijing Acad Sci & Technol, Inst New Mat & Adv Mfg, Beijing 100089, Peoples R China
关键词
gastric cancers; patient-derived xenografts; assembloids; therapeutic drug screening; EXTRACELLULAR-MATRIX; TREATMENT RESPONSE; GELATIN HYDROGEL; FIBROBLASTS; RESISTANCE; VISCOELASTICITY; BIOBANK; GROWTH; 2D;
D O I
10.1002/smtd.202400204
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The construction of reliable preclinical models is crucial for understanding the molecular mechanisms involved in gastric cancer and for advancing precision medicine. Currently, existing in vitro tumor models often do not accurately replicate the human gastric cancer environment and are unsuitable for high-throughput therapeutic drug screening. In this study, droplet microfluidic technology is employed to create novel gastric cancer assembloids by encapsulating patient-derived xenograft gastric cancer cells and patient stromal cells in Gelatin methacryloyl (GelMA)-Gelatin-Matrigel microgels. The usage of GelMA-Gelatin-Matrigel composite hydrogel effectively alleviated cell aggregation and sedimentation during the assembly process, allowing for the handling of large volumes of cell-laden hydrogel and the uniform generation of assembloids in a high-throughput manner. Notably, the patient-derived xenograft assembloids exhibited high consistency with primary tumors at both transcriptomic and histological levels, and can be efficiently scaled up for preclinical drug screening efforts. Furthermore, the drug screening results clearly demonstrated that the in vitro assembloid model closely mirrored in vivo drug responses. Thus, these findings suggest that gastric cancer assembloids, which effectively replicate the in vivo tumor microenvironment, show promise for enabling more precise high-throughput drug screening and predicting the clinical outcomes of various drugs. Realistic cancer models are critical for drug screening and personalized medicine. Here, the authors develop a preclinical gastric cancer assembloid model that demonstrates a good intra-batch consistency and recapitulates key components of the primary tumors, overcoming the throughput problem of traditional preclinical cancer models in drug screening. This model can be used in therapeutic drug screening and predicting clinical outcomes. image
引用
收藏
页数:13
相关论文
共 64 条
[1]   Generation of Functional Human 3D Cortico-Motor Assembloids [J].
Andersen, Jimena ;
Revah, Omer ;
Miura, Yuki ;
Thom, Nicholas ;
Amin, Neal D. ;
Kelley, Kevin W. ;
Singh, Mandeep ;
Chen, Xiaoyu ;
Thete, Mayuri Vijay ;
Walczak, Elisabeth M. ;
Vogel, Hannes ;
Fan, H. Christina ;
Pasca, Sergiu P. .
CELL, 2020, 183 (07) :1913-+
[2]   Interrogating open issues in cancer precision medicine with patient-derived xenografts [J].
Byrne, Annette T. ;
Alferez, Denis G. ;
Amant, Frederic ;
Annibali, Daniela ;
Arribas, Joaquin ;
Biankin, Andrew V. ;
Bruna, Alejandra ;
Budinska, Eva ;
Caldas, Carlos ;
Chang, David K. ;
Clarke, Robert B. ;
Clevers, Hans ;
Coukos, George ;
Dangles-Marie, Virginie ;
Eckhardt, S. Gail ;
Gonzalez-Suarez, Eva ;
Hermans, Els ;
Hidalgo, Manuel ;
Jarzabek, Monika A. ;
de Jong, Steven ;
Jonkers, Jos ;
Kemper, Kristel ;
Lanfrancone, Luisa ;
Maelandsmo, Gunhild Mari ;
Marangoni, Elisabetta ;
Marine, Jean-Christophe ;
Medico, Enzo ;
Norum, Jens Henrik ;
Palmer, Hector G. ;
Peeper, Daniel S. ;
Pelicci, Pier Giuseppe ;
Piris-Gimenez, Alejandro ;
Roman-Roman, Sergio ;
Rueda, Oscar M. ;
Seoane, Joan ;
Serra, Violeta ;
Soucek, Laura ;
Vanhecke, Dominique ;
Villanueva, Alberto ;
Vinolo, Emilie ;
Bertotti, Andrea ;
Trusolino, Livio .
NATURE REVIEWS CANCER, 2017, 17 (04) :254-268
[3]   Maintaining Tumor Heterogeneity in Patient-Derived Tumor Xenografts [J].
Cassidy, John W. ;
Caldas, Carlos ;
Bruna, Alejandra .
CANCER RESEARCH, 2015, 75 (15) :2963-2968
[4]   clusterProfiler 4.0: A universal enrichment tool for interpreting omics data [J].
Wu, Tianzhi ;
Hu, Erqiang ;
Xu, Shuangbin ;
Chen, Meijun ;
Guo, Pingfan ;
Dai, Zehan ;
Feng, Tingze ;
Zhou, Lang ;
Tang, Wenli ;
Zhan, Li ;
Fu, Xiaocong ;
Liu, Shanshan ;
Bo, Xiaochen ;
Yu, Guangchuang .
INNOVATION, 2021, 2 (03)
[5]   Effects of extracellular matrix viscoelasticity on cellular behaviour [J].
Chaudhuri, Ovijit ;
Cooper-White, Justin ;
Janmey, Paul A. ;
Mooney, David J. ;
Shenoy, Vivek B. .
NATURE, 2020, 584 (7822) :535-546
[6]   Single-cell transcriptome analysis identifies distinct cell types and niche signaling in a primary gastric organoid model [J].
Chen, Jiamin ;
Lau, Billy T. ;
Andor, Noemi ;
Grimes, Susan M. ;
Handy, Christine ;
Wood-Bouwens, Christina ;
Ji, Hanlee P. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[7]   SOX9 Modulates the Transformation of Gastric Stem Cells Through Biased Symmetric Cell Division [J].
Chen, Qiyue ;
Weng, Kai ;
Lin, Mi ;
Jiang, Ming ;
Fang, Yinshan ;
Chung, Sanny S. W. ;
Huang, Xiaobo ;
Zhong, Qing ;
Liu, Zhiyu ;
Huang, Zening ;
Lin, Jianxian ;
Li, Ping ;
El-Rifai, Wael ;
Zaika, Alexander ;
Li, Haiyan ;
Rustgi, Anil K. ;
Nakagawa, Hiroshi ;
Abrams, Julian A. ;
Wang, Timothy C. ;
Lu, Chao ;
Huang, Changming ;
Que, Jianwen .
GASTROENTEROLOGY, 2023, 164 (07) :1119-+
[8]   Clinical and therapeutic relevance of cancer-associated fibroblasts [J].
Chen, Yang ;
McAndrews, Kathleen M. ;
Kalluri, Raghu .
NATURE REVIEWS CLINICAL ONCOLOGY, 2021, 18 (12) :792-804
[9]  
Choi Yoon Jin, 2016, J Cancer Prev, V21, P279, DOI 10.15430/JCP.2016.21.4.279
[10]   The evolving tumor microenvironment From cancer initiation to metastatic outgrowth [J].
de Visser, Karin E. ;
Joyce, Johanna A. .
CANCER CELL, 2023, 41 (03) :374-403