Stability of equilibria and bifurcations for a fluid-solid interaction problem

被引:0
|
作者
Bonheure, Denis [1 ]
Galdi, Giovanni P. [2 ]
Gazzola, Filippo [3 ]
机构
[1] Univ Libre Bruxelles, Dept Math, Blvd Triomphe 155, B-1050 Brussels, Belgium
[2] Univ Pittsburgh, Dipartment Mech Engn & Mat Sci, 4200 5th Ave, Pittsburgh, PA 15213 USA
[3] Politecn Milan, Dipartimento Matemat, Piazza Leonardo Vinci 32, I-20133 Milan, Italy
基金
美国国家科学基金会;
关键词
Navier-Stokes equations for incompressible viscous fluids; Fluid-solid interaction; Stability; Steady bifurcation; RIGID-BODY; FLOW; EXISTENCE; MOTION; LIQUID;
D O I
10.1016/j.jde.2024.07.007
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study certain significant properties of the equilibrium configurations of a rigid body subject to an undamped elastic restoring force, in the stream of a viscous liquid in an unbounded 3D domain. The motion of the coupled system is driven by a uniform flow at spatial infinity, with constant dimensionless velocity lambda. We show that if lambda is below a critical value, lambda(c )(say), there is a unique and stable time-independent configuration, where the body is in equilibrium and the flow is steady. We also prove that, if lambda < lambda(c) , no oscillatory flow may occur. Successively, we investigate possible loss of uniqueness by providing necessary and sufficient conditions for the occurrence of a steady bifurcation at some lambda(s) >= lambda (c) . (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons .org /licenses /by -nc -nd /4 .0/).
引用
收藏
页码:324 / 367
页数:44
相关论文
共 50 条
  • [41] Limiting behaviour of a spectral problem in fluid-solid structures
    Conca, C.
    Planchard, J.
    Vanninathan, M.
    Asymptotic Analysis, 1993, 6 (04) : 365 - 389
  • [42] A canonical problem for fluid-solid interfacial wave coupling
    Craster, RV
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1996, 452 (1950): : 1695 - 1711
  • [43] Fluid-solid interaction analysis using ANSYS/multiphysics
    Rao, A
    COMPUTATIONAL FLUID AND SOLID MECHANICS 2003, VOLS 1 AND 2, PROCEEDINGS, 2003, : 1492 - 1496
  • [44] Fluid-solid interaction in particle-laden flows
    Liu, QQ
    Singh, VP
    JOURNAL OF ENGINEERING MECHANICS, 2004, 130 (12) : 1476 - 1485
  • [45] Moving immersed boundary method for fluid-solid interaction
    Cai, Shang-Gui
    Ouahsine, Abdellatif
    Hoarau, Yannick
    PHYSICS OF FLUIDS, 2022, 34 (05)
  • [46] OpenFOAM FINITE VOLUME SOLVER FOR FLUID-SOLID INTERACTION
    Tukovic, Zeljko
    Karac, Aleksandar
    Cardiff, Philip
    Jasak, Hrvoje
    Ivankovic, Alojz
    TRANSACTIONS OF FAMENA, 2018, 42 (03) : 1 - 31
  • [47] Fluid-solid interaction in the design of multifunctional screw machines
    Kovacevic, A
    Stosic, N
    Smith, IK
    Mujic, E
    DESIGN 2004: PROCEEDINGS OF THE 8TH INTERNATIONAL DESIGN CONFERENCE, VOLS 1-3, 2004, : 1289 - 1294
  • [48] REGULARITY OF BOUNDARY TRACES FOR A FLUID-SOLID INTERACTION MODEL
    Bucci, Francesca
    Lasiecka, Irena
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (03): : 505 - 521
  • [49] Fluid-solid interaction in electrostatically actuated carbon nanotubes
    Mir Masoud Seyyed Fakhrabadi
    Abbas Rastgoo
    Mohammad Taghi Ahmadian
    Journal of Mechanical Science and Technology, 2014, 28 : 1431 - 1439
  • [50] One method of Fluid-Solid coupled interaction simulation
    Lin, Y. W.
    You, X. C.
    Zhuang, Z.
    ADVANCES IN FRACTURE AND MATERIALS BEHAVIOR, PTS 1 AND 2, 2008, 33-37 : 1095 - 1100